
CZECH TECHNICAL UNIVERSITY AT PRAGUE

Faculty of Nuclear Sciences and Physical Engineering

Department of Mathematics

MANAGING WIDELY DISTRIBUTED DATA-SETS
(From physical to logical file)

Research report

Author: Pavel Jakl
Supervisor: Dr. Jérôme Lauret, Brookhaven National Laboratory, USA
Consultant: Dr. Michal Šumbera, Nuclear Physics Institute AS CR
School year: 2005/2006

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta jaderná a fyzikálně inženýrská

Katedra matematiky

DISTRIBUOVANÁ SPRÁVA KOLEKCÍ DAT
(Přechod od fyzického k logickému názvu souboru)

Výzkumný úkol

Vypracoval: Pavel Jakl
Vedoućı práce: Dr. Jérôme Lauret, Brookhaven National Laboratory, USA
Konzultant: Dr. Michal Šumbera, Ústav jaderné fyziky, Akademie věd ČR
Školńı rok: 2005/2006

Prohlašuji, že jsem tento výzkumný úkol napsal samostatně s použit́ım pouze citované
literatury.

V Praze dne 15. zář́ı 2006

Pavel Jakl

Contents

1 Introduction 2

2 A case study 5

2.1 STAR experiment . 6

2.2 STAR computing resources . 7

2.3 Storage solutions in STAR: Centralized vs distributed 8

2.4 Hardware vs Software solution . 11

2.5 STAR data computing model . 14

2.5.1 Distributed data model in STAR: rootd current approach . . . 16

2.6 Distributed file systems for HENP environment 18

2.6.1 The dCache system . 19

2.6.2 Xrootd (eXtended rootd) system 21

3 Delivering high-performance and scalable data access 26

3.1 Basic xrootd deployment . 27

3.2 Enabling Mass Storage System (MSS) access 30

3.2.1 Un-coordinated MSS requests 31

3.2.2 Creating a uniform name-space 33

3.2.3 Coexistence with other Data management tools in STAR . . . 36

3.3 Increasing I/O rate from MSS . 36

3.3.1 Load balancing and server selection algorithm 38

3.3.2 Investigating workload of the system 41

3.4 Monitoring the behavior of xrootd . 44

3.5 Measuring and comparing the performance 45

4 Improving Xrootd 50

4.1 XROOTD - SRM architecture design 52

5 Conclusion 55

A Load statistic 57

Bibliography 62

1

Chapter 1

Introduction

2

3

Driven by increasingly complex problems and propelled by increasingly powerful
technology, today’s science is as much based on computation as it is on collaboration
and efforts of individual experimentalists and theorists. But even as computer power,
data storage, and communication continue to improve exponentially, computational
resources are failing to keep up with what scientists demand of them. Their
requirements are several times bigger than it is possible to offer under usual and
available conditions.

Whether mapping the human genome, imaging the earth’s substructure in
search of new energy reserves, or discovering new subatomic particles, data-intensive
applications are placing intensive pressure on enterprise computing and storage
environments. To be more specific, thirty years ago, the high-energy and nuclear
physicists were happy to create bubble chamber photographs providing the aestheti-
cally most appealing visualization of sub-nuclear collisions. Nowadays, they do not
only collect several order of magnitude more particles but they also want to measure
particle energies, the behavior of the collisions and their following directions in real
time as well as the correlation amongst the different particle produced and this, with
very high accuracy.

This involves collecting a large amount of data (magnitude of several Peta-
Bytes (PBs)) which greatly overcome today’s personal computers shipped with up to
300 gigabytes (GB) of storage space and requires advanced data mining techniques as
well as vast resources. Hence already in 1960’s, the idea of building high performance
computing clusters came to birth, and we sometimes associate the the emergence of
this idea (at least as soon as they couldn’t fit all their work into one computer) with
the invention of ”clusters”.

In general, the aim of the high performance computing clusters is to provide
large amounts of aggregate computing power for one or more users (applications).
High performance computing started first with dominanace of the highly specialized
supercomputers which are computing systems comprised of multiple (usually mass-
produced) processors linked together in a single system.

In recent years, these computers have largely been replaced by lower cost Linux
cluster computing configurations which further led to idea of building powerful Grids
associating many clusters, even separated computers connected by a network around
the world. Grids provides the ability to perform computations on large data sets,
by breaking them down into many smaller ones, or provide the ability to perform
many more computations at once than would not be possible on a single computer.
The purpose is to build a single uniform access to big computing power and solve
large-scale computation and storage problems.

Whether one refers to the grid as just a pure Computational grid or in ad-
vance a Data grid, one needs to deal with the reservation and co-scheduling of storage
resources, similar to reservation and scheduling of compute resources. Unfortunately,
storage architectures have not kept pace with growing size of computer clusters being
widely distributed. Distributed means that storage is spread over N computers (N is

4

size of cluster) or the storage is being accessed by many physically distributed and
simultaneous requests.

There are several problems and challenges that such storage systems must solve.
It needs to face issues of name-space, safe keeping of meta-data, data replication
access and coherence to cite only those. It needs to provide stable performance
in data access with consideration to scalable potential. Last but not least, the
storage system needs to provide robustness in the case of infrastructure failures and
recover automatically from failures. This is especially important in distributed envi-
ronment where ”remote troubleshooting” is from problematic perspective not possible.

In this work, we will present some of many requirements with constitute a ro-
bust data storage solution and will do so by putting into perspective different storage
architectures, topologies and approaches. We will first introduce several current
available solutions, make theoretical comparison between them and show their
architectures as well as their drawbacks. We will then focus on highlight one solution,
explain the rationales behind its choice, shows its performance and scalability as
results of the evaluation in the real environment of the High Energy and Nuclear
Physics experiment.

For the future work, we will present the plans to improve this solution, in or-
der to fully satisfy experiment’s needs and requirements within a fully distributed
computing environement.

Chapter 2

A case study

5

2.1. STAR EXPERIMENT 6

2.1 STAR experiment

STAR experiment [1] is one of the four physics experiments at the Relativistic Heavy
Ion Collider (RHIC) [2] at Brookhaven National Laboratory (BNL) [3] on Long Island,
New York. The Solenoidal Tracker (STAR) is the detector located at the 6 o’clock
position at the RHIC collider ring.

The primary goal of this field of research is to re-create in the laboratory a new state of
matter, the quark-gluon plasma (QGP) [4], which is predicted by the standard model
of particle physics to have existed ten millionths of a second after the Big Bang (origin
of the Universe) and may exist in the cores of very dense stars. It is used to search for
signatures of quark-gluon plasma formation and investigates the behavior of strongly
interacting matter at high energy density by focusing on measurements of hadron
production over a large solid angle. STAR measure many observables simultaneously
to study signatures of a possible QGP phase transition and the space-time evolution
of the collision process.

STAR collaboration consists of more than 500 physicists and scientists from 52 in-
stitutions in 12 countries around the world. As several physics topics in the field of
Nuclear Physics is limited by the available statistics for a measurement, the more
statistics one may have and, the more accurate measurement is. Hence, the experi-
ment has generated enormous amount of data since its start at May/June 2000. The
word enormous means data-sets magnitude of several Peta bytes (1015 of byte) of data
stored in over 10 millions of files over past 6 years of collider’s running. The picture

� �

���� ���� ���� ���� ���� ���� ���� ����
�

����

	���

����

����

�����

����������

�
�
�
�
��
��
��
�
�
��
�
�
�

Figure 2.1: Raw data projection for the STAR experiment. Since one data mining
pass leads to an equal amount of Physics data, these numbers need to be multiplied
by a factor of 2 to reflect the the total Raw+Physics usable

2.1 shows size expectations of data for the up-coming years with regard of STAR’s
physics program. Those projections take into account planned upgrades which will
generate increase of data to be taken as needed by evolution of the Physics program.
This huge amount of data certainly brings a need of large computing environment
and infrastructure which allows firstly reconstruct and further analyze data by many
physicists interested in different kinds of STAR physics observables. A significant part
of the computing effort has been focused on developing software for management and

2.2. STAR COMPUTING RESOURCES 7

maintenance of storage, mainly developed in PERL language [5], [6], [7] and using
MySQL database [8], [9], the model is described later in the section 2.5.

2.2 STAR computing resources

STAR utilizes primarily two computing facilities, the RHIC Computing Facility
(RCF) located at the Brookhaven National Laboratory(BNL), and the Parallel
Distributed System Facility(PDSF), a sub-cluster complex of the National Energy
Research Scientific Computing Center(NERSC) at Lawrence Berkeley National
Laboratory (LBNL). Both of these facilities are Linux-based cluster with about
thousand of CPUs, several hundreds TBs of disk space and PBs of the tape space.

The RCF/BNL facility is the location where the work described in this report
took place. The RHIC Computing facility disposes with range from having dual
Pentium III 450 MHz processors to dual 3.2 GHz Pentium IV processors. They have
between 512 MB - 2 GB RAM, and 40 GB - 400 GB local disk storage. The older
machines have 100 Mb network interfaces, but the newer, faster machines have Gb
Ethernet network interfaces. These machines were originally configured with the
RedHat Linux distribution, but have migrated to Scientific Linux, which is RedHat
Linux open source code, compiled and distributed by Fermi National Accelerator
Laboratory for better achievement and support of physics needs and goals.

Data work-flow from reconstruction to analysis

When the collider is running, the storage of raw data taken directly by each subsystem
of the STAR detector is accomplished using a hierarchical system of IBM servers,
StorageTek tape silos, and HPSS (High Performance Storage System) software.
After the raw data is archived, a reconstruction process is started: data are moved
from tape to disk so that measurements gathered by different sensors can be sorted
by time and packaged into individual events. The reconstruction process is each
time individual and dependent on currently running physics program. Although, the
process has identical characteristics that must move the raw data from tape into
local disk, pass all files with the help of batch system to distribute and control the
processing into many independent jobs.
Each job moves results after accomplishment from a local disk into the permanent
space which it is again the tape system (HPSS). The tape system offers cheap and
reliable storage, but on opposite side very slow access and data needs to be usually
migrated on temporary and faster locations where could be available for physicist’s
analysis. These temporary locations for fast access involve a building of sophisticated
large storage architectures and solutions. This topic would be discussed in following
sections.

2.3. STORAGE SOLUTIONS IN STAR: CENTRALIZED VS DISTRIBUTED 8

2.3 Storage solutions in STAR: Centralized vs dis-

tributed

There are three coexistent methods mentioned in [10], [11] for connecting disk-based
storage to computing nodes for fast access. These three methods could be merged
and re-grouped into two main topologies/approaches:

• Centralized storage - a centralized storage is a storage with many heteroge-
neous servers connected to one single storage space. The single storage space
can have heterogeneous storage entities or disk drives. With centralized storage
solution, there two mainstream sub-groups corresponding to two main architec-
ture choice or strategies:

� Network Attached Storage (NAS) - NAS systems usually contain one or
more hard disks, often arranged into logical, redundant storage contain-
ers or RAID arrays connected over the network to computing node. The
containers are called NAS filers.

� Storage Area Networks (SAN) - SAN is dedicated, high performance stor-
age network that transfers data between servers and storage devices, sep-
arate from the local area network connected to computing nodes using
Fibre Channel. The Fibre Channel is a high performance network tech-
nology designed to bring speed and flexibility to multiple disc drive storage
systems.

• Distributed storage - a distributed storage is a storage that has many
geographically-dispersed disk drive units, usually spread over many hosts or
servers. All the hosts or servers are connected together through the network.

� Direct Attached Storage (DAS) - DAS is the most basic level of storage in
which storage devices are part of the host computer and directly attached
to it. The computing nodes must therefore ”physically” contact the server
(the host owning the storage) in order to connect to the storage device.
Unix systems implements the NFS (Network File System) protocol as on
way to communicate between server and clients in a uniform manner. Most
NFS architecture suffers from the single point of failure represented by the
server node.

Choosing the right storage solution can be a very difficult question, because there is
no right answer for everyone. It is very important to look he load and usage profile
but also the long-term plans and requirements of the current organization. Several
key criteria which could be considered include:

• Performance - aggregate I/O and throughput requirements of the system

• Capacity - the amount of data to be stored

• Scalability - possible long-term and easy growth of the storage system

• Availability and Reliability - storage is on-line 24/7 without any disruptions

2.3. STORAGE SOLUTIONS IN STAR: CENTRALIZED VS DISTRIBUTED 9

• Data protection - recovery and/or backup requirements

• Maintenance - human resources requirements and cost for maintenance of the
system

• Budget concerns - initial purchase price in regards of the storage volume

Since the whole discussion is dedicated to having very high performance, reliable and
fast access to physics data one could imagine that well-known SAN with its ”Fibre
Channel” could be the best choice. However, there are many circumstances when
deciding between NAS and SAN is not an easy task.

Firstly, SAN solutions come into flavors much faster than what was available
5 years ago. During the past five years the transfer rate for leading edge Fibre
Channel has increased fivefold from 20MB per second to 100MB per second per one
fiber. Over this same period, however, the transfer rate for leading edge networking
interconnects has increased tenfold from copper based connection at 12.5MB per
second for 100baseT Ethernet to 128MB per second for Gigabit Ethernet per machine
or client. In other words, network data rates before possible from solutions reserved
for high end servers are now so inexpensive that they have become commodities,
making possible an aggregate IO (over many clients) which cannot be absorbed by a
single fiber channel NAS.
Secondly, NAS is easier to understand than SAN. SAN are very complex with its
infrastructure; one has to firstly understand Fibre Channels, then the switch manual,
and the manuals that come with any SAN management software. The concepts of
Fibre Channel, arbitrated loop, fabric lo-gin, and device virtualization are not always
easy to grasp.
Thirdly, NAS is easier to maintain than SAN. SANs are composed of pieces of
hardware from potentially many vendors. SANs have therefore a larger number of
components that can fail and fewer tools to troubleshoot these failures, and more
possibilities of finger pointing.
Lastly, NAS is much cheaper than SAN. Again, since NAS let you leverage your
existing network infrastructure, they are usually much cheaper to implement than a
SAN.

Although, it may seem that NAS is a more appropriate solution for each envi-
ronment, there could be instances where the SAN’s aggregate throughput can
overbalance its cost and complexity.
Another dimension of the question comes when one start considering centralized
storage versus distributed. The question ”DAS, NAS, SAN ? ” could perhaps be
reduced just to ”Centralized vs distributed ?” as we will explain.

Although distributed storage introduce many components within a complex
server/server and server/clients layout, from economical statistics, the initial pur-
chase price is cheaper by factor of 10 comparing to the distributed storage. As a
consequence, even though the implementation of centralized storage is growing at a
faster rate than that of distributed storage (mainly due to the lack of ready-to-use
solution to manage data distribution), its cost cannot compete to the possibility

2.3. STORAGE SOLUTIONS IN STAR: CENTRALIZED VS DISTRIBUTED 10

offered by distributed storage solutions.

When considering distributed disk, it is important to understand what the
data availability requirements are. In order for clients on the network to access the
storage device, they must be able to access the server it is connected to, speaking
nothing of getting information which server contact. If the server is down or
experiencing problems, it will have a direct impact on user’s ability to access the
data. In addition, the server also bears the load of processing applications which can
at the end slow the IO throughput as we mentioned in a previous section.

When applying this discussion to studied case of having fast access to physics
data and making a conclusion, the availability and data protection aspects in
distributed storage could be reduced by re-copying the lost data from master copy
on the tape drive to the other server. Speaking about scalability and capacity of
distributed storage, one could imagine linear growth of storage simultaneously with
computing nodes, since the storage is attached. There is no other need for extra
hardware in order to increase the size of the storage. The maintenance resources are
reduced in case of distributed disk, since there is no need of having two separated
persons for maintaining computing and storage element, one person can serve both
of them.

As a conclusion, the distributed storage seems as a better solution for physics
data and is bringing cheaper, scalable, capable solution, but on the other hand worse
manageability, sometimes called: ”Islands of information”. The difficulty relies on
management of space spread among multiple servers, not mentioning load balancing
issue, obtaining highest performance and scalability (since CPU and storage are now
coexisting).

� �

����������	

�
��

��
��

	
�
�
��
�
�
�

���� ���� ���� ���� ���� ���� ���� ����
���

������

������

������

 �����

������

������

������

������

����
�!���"�"��

#���
	$�%�"�"��

Figure 2.2: RHIC computing facility capacity profile

Driven by the need for vast amount of data and economics, the STAR software &
computing project has taken the decision to move toward to a distributed storage

2.4. HARDWARE VS SOFTWARE SOLUTION 11

model infrastructure as their primary storage solution as illustrated in Figure 2.2.
This satisfies the needs of the collaboration and the requirements for the upcoming
years. To be more concrete, STAR now-days disposes, at the RCF with 150 TB
of disk space spread over 400 nodes and 75 TB of centralized storage implemented
by SAN and exposed to the users via NFS. This is not without challenge and the
next chapters will be focused on the architectural, methodological, algorithmic and
technological aspects of the publication, management and performing large scale
data access on the distributed storage.

2.4 Hardware vs Software solution

By this time, we have already discussed centralized and distributed storage topologies
with their benefits/handicaps from viewpoint of infrastructure issues trying to address
main goals and postulates of the ability to somehow publish data. The previous
question of ”Centralized vs distributed ?” should be discuss from different vision as:
”Hardware vs software solution” with reference to current nowadays implementations.

At this time, current centralized file system designs fundamentally limit per-
formance and availability since all read misses and all disk writes go through central
server or head node.To increase performance, reliability, availability and reduce possi-
ble bottlenecks, a typical installation relies on specialized server machines/hardware
configured with multiple processors, I/O channels, and I/O processors or even using
pure hardware architectures such as RAID.

In order to address reliability problems of failing devices as well as to improve
the I/O performance in centralized solutions, the concept of RAID (Redundant Array
of Inexpensive/Independent Disks) [12] has been widely adopted over the past years.
The cited publication originally detailed five strategies, usually referred to as RAID
levels and numbered from 1 to 5, which use different strategies to protect against data
loss, to improve the performance, or both. Later on, additional and hybrid RAID
levels have been developed, among them linear RAID, RAID-0, RAID-6, RAID-10,
or RAID-53, to name the most common ones. The basic idea of all RAIDs is to
increase data availability to enhance reliability and/or performance. One strategy
used by several RAID levels is striping: logically consecutive data is subdivided
into blocks, which are stored in a round-robin fashion. Second strategy used is:
a parity block - the exclusive OR of the corresponding bits of data blocks being striped.

This improves the transfer rate in streaming mode as multiple requests can be
issued to the constituent devices in parallel fashion. The actual RAID level deter-
mines, how redundant the information is generated, if at all, and how the data and
the redundancy information is spread over the devices.
Linear RAID is a simple concatenation of several disks into one large virtual device.
It provides no protection against device failures and the performance does not differ
from that of a single disk. RAID-0 uses all its constituent devices for data striping.
As in linear RAID, no redundancy algorithm protects from data loss. However, due
to the application of striping it provides better transfer rates. RAID-1 duplicates

2.4. HARDWARE VS SOFTWARE SOLUTION 12

data to a clone disk. Hence, in case of a disk failure, the data is still available by
means of the other disk. Read accesses can also be sped up by reading the data
in a stripe fashion. RAID-2 uses Hamming codes, which extends parity check and
bit errors.At a comparable performance it needs more space than RAID-3 and is
hence rarely implemented. The latter RAID level stripes data on a byte level. As all
disks are accessed in every I/O operation, RAID-3 delivers a high transfer rate, but
works poorly for applications with high request rates. Data protection is achieved by
parity storage on a dedicated device. RAID-4 and RAID-5 stripe on block level and
access each disk individually. While RAID-4 uses a dedicated parity device, which
can easily become a bottleneck, RAID-5 distributes the parity information over all
underlying devices for load balancing purposes. As RAID-5 is a compromise between
performance and reliability, it is very widely used in most centralized solution. A
more detailed discussion of the advantages and shortcomings of the different RAID
levels can be found in [13].

While RAID offers performance and reliability, it suffers from 2 limitations.
First, the overhead of parity management in all RAID levels can hurt performance
for small writes; if the system does not simultaneously overwrite all N-1 blocks of a
stripe, it must first read the old parity and some of the old data from the disks to
compute the new parity. A second and most significant drawback of commercially
available hardware RAID systems is that they are significantly more expensive that
non-RAID commodity disks because they need to have special-purpose hardware to
compute parity.

No matter, if the centralized solution is using architecture such as RAID and
its advance striping, a central server represents a single point of failure requiring
server replication for high availability. Replication surely increases the cost and
complexity of central servers and can increase latency on writes since the system must
replicate data at multiple servers. The overhead can even grow and be functionally
dependent on the size of the repository.

One of the file system and storage solution, trying to solve a problem having one
central server as a bottleneck is Panasas file system and storage cluster [14], [15].
The core of the Panasas architecture is a cluster of intelligent ”StorageBlades”. These
hardware-based devices provides the storage and parallel transfer capabilities of the
system. They are pooled into a cluster that provides the capacity and load balancing
across the cluster, and fault tolerance through the RAID reconstruction. Additional
cluster of ”DirectorBlades” forms the meta-data management layer and acts as
a protocol gateway to support other file system and data management protocols,
including NFS and CIFS.

The other file system worth to be mentioned is Lustre [16], which aims to
provide a scalable, high performance file system in more software fashion way than
Panasas. Its architecture follows the client-server paradigm using multiple servers,
the so-called I/O daemons. These daemons usually run on I/O nodes, which are
special nodes in the cluster dedicated to I/O. User applications run on compute
nodes, which need not to be distinct from I/O nodes. A meta-data manager handles

2.4. HARDWARE VS SOFTWARE SOLUTION 13

all meta-data information. This manager is contacted by user processes for operations
such as open, close, create, or remove. The meta-data manager returns information
that is used by the clients to contact the I/O daemons for direct file access. The
meta-data manager is contacted in each case of file system meta-data changes. In
Lustre’s terminology, the servers are called Object Storage Targets (OSTs). They
manage the data stored on the underlying devices, the so-called Object Based Disks
(OBDs). This two-fold storage abstraction allows for an easy integration of smart
storage devices with object-oriented allocation and data management in hardware
and follows the general trend of offloading I/O to the devices itself.
Even if the file system is somehow distributed on dedicated server, there is still the
question whether the central meta-data server could become a bottleneck whenever
the cluster grows.

The high-performance storage solution, known as the General Parallel file
system (GPFS) [17] coming from IBM try to address the meta-data issue Lustre
doesn’t consider. In contrast with other file systems, GPFS does not require a
central meta-data server. Instead, meta-data is handled at the node which is using
the file. This approach avoids the central server becoming a bottleneck in meta-data
intensive applications, and it also eliminates this server as a possible single point of
failure. Having the handling of meta-data at the level of I/O operation without any
more complex organization and infrastructure has been already proved by GPFS as
limiting the number of users and nodes serving data. While resolving one issue, an-
other comes into the picture: the synchronization of requests and meta-data handling.

The Google file system [18] is an example of distributed storage system
taking a dramatic different approach: it makes use of the knowledge of the appli-
cation needs by moving the data closer to the application during system operation.
After processes migration the data is accessible on the local node, reducing both the
CPU load and the load on the network. Another drawback common to almost all
storage systems is the neglect of sophisticated reliability mechanisms. The preferred
approach to protect against data loss - if the system provides such a protection at
all - is by generating replicas, which reduces the amount of usable storage capacity
significantly but increase availability. Another approach is having the primary copy
of a file at any kind of cheap storage solution such as a tape and in case of need, such
data can be quickly migrated back to live storage.

A summarizing comparison of all mentioned architectures and file system is
difficult and maybe inappropriate, since they differ in many aspects, such as
interfaces, hardware requirements, abstraction levels, reliability, and performance (in
terms of latency or throughput).
However, a characteristic common to almost all these systems is that they do not take
into account the possible benefit of adapting the architecture to the characteristics
of a broad range of applications, i.e. to their access behavior and their inherent
independence of tasks. In many applications read accesses tend to occur much
more frequently than write accesses. Most data is written once but read multiple
times. This is applicable to all kinds of applications performing searches, data
analysis, data mining, data retrieval, and information extraction. In addition, many

2.5. STAR DATA COMPUTING MODEL 14

applications can be split into several independent tasks processing independent data.
One examples of such application is already presented High energy and nuclear
application searches for rare particles and tracks in many files.

A common denominator is also that the performance bottleneck of these systems is
usually meta-data handling inside the file systems, since meta-data operations could
make up over 50% of all filesystem operations [19]. These solutions usually do not
scale well with increased number of clients and data, even with using a specialized
expensive hardware.
The answer to the initial question of hardware vs software solutions, there is
innumerable number of variants and combination hardware and software solutions,
some-when with higher weight on hardware and some-while on software. Software
solutions involve cheaper price and portability of the system, but on the other
side possible lacking performance introduced by special hardware. As defense of
the software solutions, hardware solution has an additional drawback of relying
on software and drivers for hardware not being portable on all platforms. Their
obsolete risk is therefore high/price indeed advantages. Moreover, with architectural,
methodological, algorithmic, technological aspects and experiences can possible
achieve same results seen with hardware improved solutions.

2.5 STAR data computing model

This section outlines STAR data computing model [20], introducing main components
and architecture of the model. The following discussion wants gives a more precise
description of the system architecture, its performance, and scalability characteristics
of the system, which was used at STAR for the past five years. The characterization
of the model wants to also give an overview on drawbacks and issues, not seen
directly during the architectural process. I accomplished this objective by keeping
the description of the whole system at low and informative level, and omitted too
technical and implementation details.

One can simply imagine a naive approach of using NFS-like solution for managing the
distributed storage. However, this is limited by the ability of the infrastructure and
software to efficiently balance the load amongst the data servers (a few) available to
the users or the data manager. Moreover, a deeper requirements analysis shows that
this kind of solution is not acceptable for many well-known reasons. Thousands of
concurrent accesses from end users batch jobs that continuously analyze the data in
a completely random way would for example greatly overcome the scalability of the
basic NFS architecture. In addition to the scalability, the NFS configuration grows
exponentially with each added node. To achieve load balancing in such environment,
one could imagine spreading the data-set randomly on all available storage but this
would imply a simple yet additional complex organization of the data and cataloging
capabilities. But even though one reverts to such techniques, NFS would still expose
large pools of disk subject to equally massive data losses or corruption on crashes or
hardware failures. User’s applications are usually not much tolerant to such events
and if a file simply does not exists, it is likely to see the application dies without any

2.5. STAR DATA COMPUTING MODEL 15

possibility to search for other ”copy” of a file.

To overcome some of these limitations, the natural alternative is building a
”mesh” of loosely coupled data servers interconnected by a communication network.
ROOTD [21] provides a remote file access mechanism via TCP/IP-based data
server daemon within the ROOT framework [22]. ROOT is an object data-analysis
framework used by HENP experiments. One of the most important characteristics
of the ROOT framework is its I/O structure, in which every data object belonging
to the framework can be streamed to disk and appended to an internally structured
file. A ROOT client data access method then provides a way to reach the remote
data transparently to the users of the framework.

Any experiment facing Peta bytes scale problems are in need for a highly scal-
able hierarchical storage system to keep a permanent copy of the data. STAR
uses a High Performance Storage System called HPSS [23]. Having a large archive
is not sufficient of course as million of files would make the recovery of one file
a needle in a hay stack nightmare. The second vital component is to arm the
experiment with a robust and scalable catalog, keeping the millions of files and
potentially, an order of magnitude higher number of file replicas at reach (i.e where
the data are located). If we started to speak about the cataloging requirements, we
need to define conceptions and differences between file, replica and meta-data of a file.

From a basic perspective, all data accesses systems or file systems must pro-
vide a way to store the information or content of a ”file” and a way to retrieve that
data. In its simplest form, a file stores a piece of information. A piece of information
can be a bit of text (e.g., a letter, program source code, etc.), a graphic image, a
database, or any collection of bytes a user wishes to store permanently. The size of
data stored may range from only a few bytes to the maximum size of the file limited
by the particular file system. For a structure imagination, a file could be presented
and expounded as a ”stream of bytes”.
A file system also stores separately information related to the ”file”; these information
constitutes the file system ”Meta-data” [24]. As a general definition, Meta-Data
is usually anything which characterize one (or more) ”file”. For a file system, there
are several pieces of information about a file which are meta-data: for example,
the owner, security access controls, date of last modification, creation time, and
size which belongs usually to low-level file system operations. Since meta-data is
not uniquely defined, in the scientific physics world, as meta-data we also count
information such as: production series, the collision, the beam energy and any
external conditions not saved in the stream of byte but leading to the existence of the
files. Sometimes, information such as number of events or the ”triggers”, accessible
by inspecting the content of a file, are also defined as meta-data for easier definition
of collection of files (or data-sets).
One can imagine, that a file can have multiple copies and we refer them as ”repli-
cas”. Therefore, in data management, one defines a unique result of meta-data query
as Logical file name (LFN), and speaks of a ”LFN space”, while the physical
nature or occurrence of a file are Physical file name (PFN) defining a ”PFN
space” with many replicas of a file. The relationship between LFN and PFN is 1:N,

2.5. STAR DATA COMPUTING MODEL 16

where N is greater or equal one. In order to distinguish the relations between all
defined terms, a concept of Meta-Data Catalog, File Catalog and Replica Catalog
were introduced corresponding to Meta-Data look-ups, leading to sets of logical file
names each of which are associated to one or more physical file names. Each can
have separated implementation to achieve different requirements and needs.

To this aim, STAR had developed a scalable and reliable File catalog [25], [26]
that not only holds information about physical location of a file but also meta-data
information of the file grouped into logical file such as numbers of events, triggers
etc. being used by its users on a daily basis to identify accurate data-sets which
is just a collection of files. The structure of the Catalog respects the basic layout
of the three layer separation (Meta-Data, PFN and LFN) but presents itself to the
user as a single and flexible API and command line tool allowing any queries in any
name space (the relations between the layers is analyzed and determined by the API).

2.5.1 Distributed data model in STAR: rootd current ap-
proach

In the Figure 2.3, we illustrate the distributed data model in the STAR environment.
The environment is composed of a large set of nodes (320) with each node having
from one to 3 local drives. Since the data always has a primary copy deposited by

DataCarousel

Processing nodes

Disc

Tape HPSS
Movers

ROOTD

ROOTD

ROOTD

ROOTD

Spiders

MySQL serverClient’s script
adds records

FileCatalog

Registering files

...

Data servers

Node 1

Node 2

Node 3

Node 320

. . .

Registering files

Pftp on local disk

Figure 2.3: ROOTD distributed data model used in STAR experiment

the data-reconstruction process into HPSS, additional tools are needed to retrieve
and populate the distributed disks in a pre-staged and static manner. To deal with
this effort, the DataCarousel [25] system was developed. Its main purpose is to
organize the requests made by users as well as by data population requests made
on behalf of the home-grown data management tool. Such cohesive data access and

2.5. STAR DATA COMPUTING MODEL 17

request throttling is handled by a set of compiled code interfacing with HPSS API
and scripts implementing policies managing the entire system of requests therefore,
preventing chaos.
In this system, requests are stored in a MySQL database and a decision making,
taking into account both usage policies and file relative location on one particular
tape are taken into account to therefore restrict excessive and thus much slower
restore due to mounting of robotic tapes. All requests to retrieve a file are handled
asynchronously.
However, the choice of where to restore the data from all available nodes is not a
decision made by the DataCarousel itself its purpose only being to coordinate restore
requests from HPSS. To achieve this, a set of scripts relies on space monitoring
information to determine the free storage and chose amongst the many node solely
based on space availability criterion coupled with the minimal set of files per storage
one would need for a viable operation. Additionally, Spiders [25] keeps track of newly
appearing files on each storage element and add them to the replica catalog. The
Spiders also detects data which disappear, the total time to update the entire catalog
being of the order of minutes regardless of the number of nodes. Eventually, and to
complete the illustrative model of Fig. 2.3, all user data-intensive batch jobs read
a file remotely via ROOTD, their jobs themselves are submitted according to the
selection of data-sets. The STAR Unified Meta-Scheduler (SUMS) [27] would resolve
user’s meta-data-sets into logical files and identify particular physical locations of a
file using the STAR FileCatalog API. The scheduler will then split and submit a task
into several jobs depending on user’s job description passed during the initial user’s
scheduler request. This abstraction layer makes the model viable as all files in this
model would otherwise be strongly associated to server and storage that is, requires
exact physical location knowledge. A user would hardly be able to keep track of
the data-sets and their dynamic. The system has been extremely scalable when it
comes to increasing the number of data servers, including its back-end catalog and
its relative accuracy over a ten million replicas size problem.

But while sophistication and faultless features could be achieved at a first
glance, the system still has its major flaws and deficiencies. The biggest is the lack
of dynamic features as files are added and removed. ROOTD being by essence
Physical File Name (PFN) oriented, it first needs constant cataloging and therefore
the system lacks the flexibility of moving the data around without special handling.
Even though the files would be distributed at multiple places, physical file access
requires exact reference at submission: by the time the job really starts, the entire
load picture of the cluster may very well be different from what was used for the
file access decision making process. Files placed on overloaded and not responding
nodes could suddenly be requested and the scheduled job would die. This is inherent
to the latency between a job dispatching and the time the work unit to really
starts, this cannot be circumvented within a PFN model. In fact, another of those
problems comes when a node suddenly re-appears but the disk holding the data
was wiped-clean (maintenance downtime due to disk failure and replacement). In
such cases, the Spider do not only have little time to update its information but
may not even exists since the system disk was wiped out (and so would be the
automatic start-up scripts). Once again, the jobs were already scheduled with the

2.6. DISTRIBUTED FILE SYSTEMS FOR HENP ENVIRONMENT 18

previous knowledge of file present on that storage; this would be fatal to a job. More
obvious, the data population is relatively static: users could access only the data-sets
already pre-populated in the system but never have a chance to access data-sets
available on the mass storage. A dynamic system must therefore have the capability
to hand shake with mass storage systems. Finally, a more subtle consideration,
no authorization mechanism exists in this system as there lacks write access and
advanced authorization layers. Also, such system should be self-adaptive, relying on
its own coordination mechanism to balance load and access rather than relying on an
external component providing mapping from meta-data or logical to physical name
space.

2.6 Distributed file systems for HENP environ-

ment

In contrast to central server designs and recent discussion of hardware and software
postulates, one can imagine building a truly distributed network file system with no
central bottleneck or single point of failure. The purpose of a distributed file system is
to allow users of physically distributed computers to share data and storage resources
by using common files system. The main and basic features such a system must
accomplish are [28], [29]:

• Data consistency: distributed file systems operate by allowing a user on a
computer connected to a network to access and modify data stored in files on
another computer. Thus a mechanism must be provided in order to ensure that
each user can see changes that others are making to their copies of data

• Uniform access: a distributed computing environment should support global
file names. One mechanism that allows the name of a file to look the same on
all computers is called a uniform name space

• Security: distributed file systems must provide authentication. Furthermore,
once users are authenticated, the system must ensure that the performed op-
erations are permitted on the resources accessed. This process is called autho-
rization

• Reliability: the distributed file system scheme itself improves the reliability
because it’s distributed nature, that is, the elimination of the single point of
failure of non-distributed systems

• Availability: a distributed file system must allow systems administrators to
perform routine maintenance while the file server is in operation, without dis-
rupting the user’s routines

• Performance: the network is considerably slower than the internal buses.
Therefore, the fewer clients have to access servers, the more performance can
be achieved by each one

2.6. DISTRIBUTED FILE SYSTEMS FOR HENP ENVIRONMENT 19

• Scalability: the performance of the distributed file system must scale with
number of clients and servers

• Standard conformance: comply with the IEEE POSIX 1003.1 file system
application interface (C API)

The requirements coming from High Energy and Nuclear Physics (HENP) environ-
ment, gathered up by many years of experience and followed by recent computing
directions and infrastructure such as Grid [30], are [31], [32]:

• Fault tolerance: a high degree of fault tolerance at the user side is mandatory
to minimize the number of jobs/applications failure after a transient or partial
server side problem or any kind of network glitch or damaged files

• Load balancing: a load balancing mechanism is needed, in order to efficiently
distribute the load between clusters of servers and preventing hot spots in cluster

• Tertiary Storage integration: in order to support incredible amount of data,
mass storage system integration is required

• Grid support: a distributed file system should have the ability to connect to
other instances located in different parts of the world. It should have a capability
to share and interchange data with other storage solutions

There are currently 2 distributed file systems partially complying with these require-
ments, well known in HENP computing: dCache [33], [31], [34], [35] and Xrootd [32],
[36], [37].

2.6.1 The dCache system

The dCache system is a sophisticated system which allows transparent access to
files on disk or stored on magnetic tape drives in tertiary storage systems. It is
jointly developed by DESY [38] and Fermilab [39].

dCache has proved to be capable of managing the storage and exchange of
terabytes of data, transparently distributed among dozens of disk storage nodes.
One of the key design features is that, although the location and multiplicity of
data is autonomously determined by the system, based on configuration, CPU
load and disk space, the name space is uniquely represented in a single file system
tree. The system has shown to significantly improve the efficiency of connected
tape storage systems, through caching, i.e. gather & flush, and scheduled staging
techniques. Furthermore, it optimizes the throughput to and from data clients as well
as smoothing the load of the connected disk storage nodes by dynamically replicating
files upon the detection of hot spots. The system is tolerant against failures of its
data servers, allowing administrators to go for commodity disk storage components.
Access to the data is provided by various ftp dialects, as well as by a native protocol
(dccp), offering regular file system operations like open/read/write/seek/stat/close.
The dCache name-space (pnfs) from the user perspective looks like any other cross

2.6. DISTRIBUTED FILE SYSTEMS FOR HENP ENVIRONMENT 20

mounted file system. Furthermore the software has an implementation of the Storage
Resource Manager protocol, SRM - SRM is an open standard for grid middle-ware
to communicate with site specific storage fabrics.

The dCache name-space, called PNFS (Perfectly Normal File System) is a vir-
tual file system that implements and simulates the tertiary storage name-space. It
provides two services for dCache. Firstly it serves as mountable file system presenting
the file repository. Secondly it’s used by dCache as meta-data database for the file
entries. This is done, by keeping the complete information in a relation database.
This implies that user doesn’t need to know where a specific file is located physically.
The system is maintained centrally and thus eliminated the work to be done by
local system administrators while at the same time can be tuned to the need of the
experiments or user groups. Since dCache is a distributed system which serves a
number of disks, users, tuning will significant improve the performance of the system.

Requests to dCache may come from command-line tools like dccp or from client
integrated into ROOT [22], [40]. In both cases the dCache manager is contacted
through an interface called the dCache ”door”. The dCache manager determines
the best source or destination pool or tertiary storage for the request and contacts
selected pool. Finally client reconnects to the selected pool.

The pool is responsible for a contiguous disk area:

• It monitors disk space

• It holds a list of files

• It initiates the file copy process to and from tertiary storage

• It connects to data clients for the data transfer

• It monitors the total bandwidth to and from the disk area and adjusts the
maximum number of movers

Clients send requests for a data file to mentioned ”door” of dCache system. A door is
a network server which performs user’s authentication and forwards client requests to
the pool managers. There can be more than one type of door to a dCache system, each
potentially handling a distinct authentication mechanism and each perhaps residing
on a separate host. The concept of Doors allows having multiple instances of one
same kind of door running on different hosts for load sharing and failing safeness.
The Figure 2.4 shows dCache architecture and handling of a request. In this figure,
we have represented the architecture and highlighted 2 main single points of failure
as well as one performance bottleneck. Each request needs to communicate with the
admin node which contacts the pnfs manager to obtain meta-data information of a
file and also the location of a file within the pool. Holding one admin node with
each dCache sub-systems is very dangerous and represents single point of failure. The
performance bottleneck resides in the fact that pnfs database is implemented as a
relational database with a limitation of scalability and performance. This performance
hit has been observed in dCache deployments composed of large number of clients.

2.6. DISTRIBUTED FILE SYSTEMS FOR HENP ENVIRONMENT 21

Client Door

Pool N

Primary
Admin

Monitoring

PnfsManager

HPSS

PNFS

postgresqlopen

Q: Filepath?
A: PnfsId

Q: Where is file?
A: Pool N

file tape librarydisk pool N

1

2

5

4

37

913

12

6

10

14

client OK
dcap protocol

8

11

dcap protocol

Single point of failure

Si
ng

le
 p

oi
nt

 o
f f

ai
lu

re

Admin node Performance bottleneck

Figure 2.4: DCache architecture overview with single point of failures

2.6.2 Xrootd (eXtended rootd) system

The previous solution has proved that relying on complete knowledge of where every
file resides in the system (i.e shape of comprehensive internal catalog component) is
not generally a scalable and a high performance solution. The management overhead
of meta-data and location of data is significant and dependent in some way on the
size of the repository.
Moreover, a distributed data access architecture based on the concept of centralized
catalog (PNFS in dCache) is more exposed to the risk of having an additional single
point of failure for the whole system. This leads to another type of solution: adopting
a ”publish model”.
It inheres on the view that users can write using appropriate system and then
publishes the file for read access. Once file is published it can be only deleted, never
replaced with identically named file with different content. This model corresponds
quite well to the environment of handling scientific data: write once, publish, and
read many times. One can easily imagine that the publishing of a file can be achieved
with external processes such as the STAR File Catalog described in section 2.5.
Externally, the performance of the catalog could be easily achieved by making the
database distributed among multiple servers and load balanced. It is however discon-
nected from xrootd so both components could be self reliable and eventually improved.

All requirements listed at the beginning of this section and additional require-
ment of external cataloging complies to the eXtended rootd system also known
as xrootd [36], [32], [37], [41], [42]. Its architecture allows the construction of
single server data access sites up to load balanced environments and structured
peer-to-peer deployments, in which many servers cooperate to give an exported
uniform name-space.

If we compare side to side rootd and how xrootd system can solve our prob-
lems with its architecture and features, we arrive at the following conclusions. First,

2.6. DISTRIBUTED FILE SYSTEMS FOR HENP ENVIRONMENT 22

ROOTD knows only about PFN forcing a linear scaling of the catalog as the number
of data servers increase: XROOTD on the contrary knows about LFN, and refer to
LFN for any data located within the xrootd system; there is no need for external
additional cataloging procedure of file locations or Spiders. XROOTD load balancing
mechanism determines which server is the best for client’s request to open a file;
nodes are selected based on reported information such as load, network I/O, memory
usage and available space ensuring that the scenario of an non-responsive node would
never occur. XROOTD additionally has fault tolerance features and load could
be taken by other data-servers holding the data shall one data server be offline.
But additionally, XROOTD implements a plug-in to interact with mass storage.
Missing data can be again restored from MSS within the user’s job and a delayed job
introduced by dispatching with incompatible portrait of available files is no longer
an issue. If the file is not present by the time the job starts, it will be imported
into the xrootd system space again. Within the same feature, one could imagine
a completely dynamic data space population, no longer relying on pre-staged data
but on a mechanism of ”data on demand”. As users request new data, it appears
in the system unlike our rootd based system where data-sets have to be judiciously
chosen before hand. Finally, XROOTD has a plethora of authorization plug-in which
resolves the ”trusted/untrusted” write access issue hinted earlier and open avenues
to a finer access mechanism granularity.

Table 2.1: Distributed systems comparison
ROOTD DCACHE XROOTD

Developed by ROOT DESY & FNAL SLAC, BNL
Scalability no limits small farms no limits
Security any auth any auth any auth

Platforms all platforms all platforms all platforms
Fault-tolerance No MSS plugin MSS plugin

MSS plugin No Yes Yes
Authorization No Yes Yes
Load balancing No No Yes

Protocol No dCap xroot
Grid integration No SRM (frontend) SRM (frontend)

Single point of failure Potentially each
node(but none in

particular as
disconnected)

Name-space
handling, head

node

No

As a summary, table 2.1 provides partial overview on comparison of searched and
mentioned requirements.

We will now give a quick overview of the xrootd.
One of the basic component of the system is a daemon called xrootd. The main
purposes of this component are:

• An implementation of the functionalities of a generic file server (such as open,
read, seek etc.) and therefore providing byte level access to any type of file

2.6. DISTRIBUTED FILE SYSTEMS FOR HENP ENVIRONMENT 23

• An implementation of the extensive fault recovery protocol that allows data
transfers to be restarted at an alternate server

• An implementation of a full authentication framework

• An implementation of an element that allow xrootd servers to be clustered
together while still providing a uniform name-space

• A communication optimizations such as handling of asynchronous requests, net-
work scheduling and thread management

While the xrootd server was written to provide single point data access performance
with an eye to robustness; it is not sufficient for large scale installations. Single point
data access inevitably suffers from overloads and failures due to conditions outside
the control of one server.
The approach to solving this problem involves aggregating multiple xrootd servers
to provide a single storage image with the ability to dynamically reconfigure client
connections to route data requests around server failures. Such an approach can work
as long as servers are not independent. That is, servers can be aggregated and a failure
of any server can not affect the functioning of other servers that participate in the
scheme. This model is close in philosophy to the one of the peer-to-peer [43] systems
which have shown to be extremely tolerant of failures and scale well to thousands
of participating nodes. The second component of the Xrootd system is a daemon

olbd manager olbd server

Xrootd

data

olbd server

Xrootd

data

Host y Host x Host z

Client

Xrootd

5

1

2

3 3

4

Data network

Control network

Figure 2.5: Schematic interaction of xrootd and olbd

called olbd (Open Load Balancer Daemon). It is a specialized server that can provide
information to the Xrootd systems and steer clients toward appropriate servers (least
loaded). In essence, the whole system consists of:

• A logical data network (the xrootd servers)

2.6. DISTRIBUTED FILE SYSTEMS FOR HENP ENVIRONMENT 24

• A logical control network (the olbd servers)

The control network, as shown in Figure 2.5, is used to cluster servers while the data
network is used to deliver actual data to the clients. The definition of a node in
the Xrootd system is a server pairing an xrootd with an olbd. An olbd can assume
multiple roles, depending on the nature of the task. In a manager role, the olbd
discovers the best server for a client file request and co-ordinates the organization
of a cluster. In a server role, the olbd provides sufficient information to its manager
olbd so that it can properly select a data server for a client request. A server role of
olbd is essentially a static agent running on a data server node. In a supervisor role,
the olbd assumes the duties of both manager and server. As a manager, it allows
server olbds to cluster around it, aggregates the information provided by the server
olbds and forwards the information to its manager olbd.

As shown in Figure 2.6, the system is organized into a B-64 tree structure,

RD

64 nodes

64

SP

SP SP
64 nodes

DS DS DS DS
64

SP

SP SP
64 nodes

DS DS
64

DS DS
64

Redirector

Supervisor

Dataserver

Figure 2.6: Example of B-64 tree structure used for clustering xrootd servers

with a manager olbd sitting at the root of the tree, sometime called redirector. The
redirector tasks is essentially to redirect client to xrootd data-servers. A hierarchical
organization of 64 size cells provides the ability of using fast 64-bit operations for
selecting a server in a sub-tree. Additionally, it scales well with minimal message
overhead being broad-casted to all servers.
By simple formula, two-level three (1 level of supervisors and 1 level of data-servers)
can route up to 642=4096 servers. One can start to argue, that this number could
be reached at some point. To pretend any server limitations, xrootd offers ability
to have multiple supervisor levels in the tree. For example three-level tree seen at
the figure (2 levels of supervisors + 1 level of data-servers) can route up to 262,144
servers. This number can be consider as human management limit of such amount
of hardware at one place. However, theoretically the architecture design can serve
infinite number of servers.

2.6. DISTRIBUTED FILE SYSTEMS FOR HENP ENVIRONMENT 25

Initially, each node contacts the manager and requests a service slot. If the manager
is full (i.e., already has 64 nodes reporting to it), it redirects the incoming node
to the supervisor nodes that are currently subscribed. The redirected node then
attempts to find a free slot at one of the supervisor nodes. Full supervisors will, in
turn, redirect the incoming node to their supervisor son nodes. Supervisor nodes
have priority over server nodes and displace any server node occupying a slot in a
fully subscribed node. This algorithm builds a tree that spans all the nodes and
practically configures the nodes into a B-64 tree of minimal height with supervisor
nodes placed as close as possible to the manager node.
One can simply take a hint that the root node of the tree is a single point of failure
in the whole architecture. In order to provide full redundancy, multiple redirectors
could be set up with fail-over mechanism. Moreover, one can easily set up a DNS
round robin mechanism over multiple redirector nodes to provide uniform access for
clients and also providing load balancing at the root level of the tree being several
times cloned. In this case, each supervisor has to connect to each manager at the
root head to create connection mesh environment as shown on the figure 3.7, where
DNS round robin serves as a simple load balancer between redirectors.
This makes XROOTD an excellent high-performance, extremely fault-tolerant and
scalable solution for serving STAR physics data with no single point of failure.

Chapter 3

Delivering high-performance and
scalable data access

26

3.1. BASIC XROOTD DEPLOYMENT 27

Our primary goal and core of our work was the deployment and evaluation of the
Xrootd system for STAR physics data at the RHIC Computing facility. The purpose
of this evaluation was to answer a question of high performance and scalability of
this system in very large deployment. While xrootd has been tested and adopted in
many academic organizations which have the necessities of massive data access, their
installations do not exceed more than 100 data servers and do not serve PetaBytes
of data. Moreover, our installation is not only unique with its magnitude, but also
with using shared concepts of environment not been seen in other installations. In
other words, we are using xrootd on non-dedicated hardware for storage purposes,
i.e. machines serving data could be also used for computational needs (usually user’s
jobs continuously analyzing data).

In the next sections, we will present all details about initial deployment offer-
ing basic access to data, through enabling access to the Mass storage system (HPSS
at BNL), tuning I/O from MSS for the best performance and finishing at monitoring
the behavior of the whole system. The last and final section of the chapter describes
the measurements of aggregate I/O comparing to several storage solutions for having
a baseline evaluation of whole system in real-life environment.

3.1 Basic xrootd deployment

As we mentioned in previous chapter, each host needs to serve two daemons: xrootd
for data access and olbd for the purpose of load balancing and aggregating all servers
together. The xrootd server has its own internal structure shown in Fig. 3.1. It is
composed of multiple components, each component serves a discreet task:

• xrd - provides networking support, thread management and protocol scheduling

• xroot - implements the xrootd protocol

• ofs (open file system) - serves as multi-component coordinator (odc, oss)

• odc (open distributed cache) - has main task to communicate with olbd through
the file socket

• oss (open storage system) - provides access to the underlying file system (actual
I/O, meta-data operation)

• acc(access control) - consists of the two separated sub-components:

� Authentication - provides the verification of the identity of a person

� Authorization - grants an access control privileges to the user

Each of these components could be separably configured using its configuration
reference [44], [45], [46].
These references contain several tuning possibilities and features like type of

3.1. BASIC XROOTD DEPLOYMENT 28

xrd

xroot

ofs authorization

oss

fs

authentication
XROOTD

MSS

odc Optional
(included in
distribution)

Protocol and Thread Manager

Protocol Layer

Filesystem Logical Layer

Filesystem Physical Layer

Filesystem Implementation

Application

Figure 3.1: Xrootd architecture components

authentication, number of threads devoted for request serving, port numbers for
listening to requests etc. Initially, one has to choose his basic configuration directives
such as port numbers, paths to be exposed to a user etc. and put them into one
configuration file which will define his system. This file is passed to the xrootd
binary during execution. Olbd server has the same logic and is easily configurable
via its configuration directive [47]. Since each xrootd component has its own defined
prefix (acc, xrd . . .), all configuration directives can be hold and maintained in one
configuration file.
For dealing with different xrootd roles (such as redirector, supervisor and data-
server), xrootd offers a feature called ”instance names”. The instance name is
passed to the binary executable and could further be used to select, within a single
configuration file with if statements like syntax capabilities different configuration
directive for different roles. The implementation of minimal logical language within
a configuration file is a very powerful concept making the maintenance of a single
configuration file easier regardless of the roles.

Example:

• executable:
xrootd -c /home/pjakl/bla.conf -n redirector -l /home/pjakl/bla.log

• configuration file:
if named redirector
xrd.port 1095
fi

Figure 3.2 shows our first basic installation with one redirector node for 320 data-
servers and 6 supervisor’s nodes. The number of supervisors is counted as a fraction
of the number of all data-servers and the size of the cell in a B64 tree. In our case,
we have 320 data-servers; 64 data-servers per supervisor would lead to the need of
at least 5 supervisors, the sixth one, taking the role of the fail-safe margin, i.e being

3.1. BASIC XROOTD DEPLOYMENT 29

able to smoothly transfer a workload of data-servers subscribed to a newly ”crashed”
supervisor node if ever happen. There is no real limit on the number of supervisors
so, in other environment, the margin could be adjusted depending on stability of
the system as a whole. The first and basic functionality of the Xrootd system is to

Redirector Redirector layer
Redirection of a client

SupervisorSupervisor Supervisor Supervisor layer

Do you have a file /x/y/z.txt ?
Do you have a file /x/y/z.txt ?

Up to 64 nodes

First 64 servers Next 64 servers Next 64 servers

Dataserver layer

Question
Question

Question Question
Question

Question Question
Question

Question

Do you have a file /x/y/z.txt ?

User requests the file /tmp/x/y/z.txt
TFile::Open(“root:/redirector:1095/x/y/z.txt”)

Figure 3.2: The overview of the basic xrootd installation

provide an access to files already placed on nodes. From the figure 3.2, it is clear,
that client is steering its request to a redirector node. This root node broadcasts
messages to other nodes with a simple question: ”Do you have the file XX??”. The
supervisor’s nodes serve as intermediate managers and shift the message lower to
the tree. When the question is answered, the client is redirected to the particular
node holding the data. This redirection prevents from overloading the head of the
structure and also allows spreading I/O load across the cluster.

One problem with our large data server deployment is also the huge amount
of components which may need to be controlled as one entity. In order to perform
this task as a whole a whole, for example being able to shut it down on 300 servers
or proceed with an upgrade or a deployment of a testbed, we have developed a set of
C-shell [48] scripts for having main functionalities to:

1. Pair the xrootd and olbd daemons with support to start,stop,restart of both
daemons

2. Pass configuration and log files from different paths

3. Set instance names based on the host name of a node

3.2. ENABLING MASS STORAGE SYSTEM (MSS) ACCESS 30

4. Save the log files from local directories into a remote location

5. Set preferred operation based on the existence of the particular file

In real life, each host has a Unix crontab record where cron daemon serves as a
automatic trigger of the script. This does not only offer previously mentioned ability
to massively restart all servers on the cluster with creating a file at the particular
location, but also provides the capability to automatically restart crashed servers in
each scheduled loop of the cron daemon whenever it happens.

3.2 Enabling Mass Storage System (MSS) access

From a basic installation users don’t have an access to files stored on tapes of MSS
or the system in not able to replicate files elsewhere in the case of overloaded and
not responding node.

We can implement those features by enabling and integrating Mass storage
system access inside our basic installation of xrootd. To achieve this, the Xrootd
systems provides two plug-in implemented as external processes (script, code . . .)
requiring specific arguments and expected to return a well defined sequence of values
and a completion status. The internal interfaces are:

• mssgwcmd - the command responsible for communication with a Mass Storage
System in order to perform meta-data operations such as stat, directory list etc.

• stagecmd - command responsible for bringing files from the Mass Storage Sys-
tem into the local disk cache

We have implemented mssgwcmd command as the Perl script using FTP Perl module
for communicating with HPSS FTP server. The second script was also implemented
as the Perl script using the get FTP command for bringing a file from HPSS into local
disk cache of the server.
The figure 3.3 shows an overview of the xrootd installation with the added MSS layer.
When using MSS access, the whole work-flow of request handling is changed. As first,
all servers has to answer the same question ”Do you have the file XX ?”. But if none
of the data-servers have the file (or are not able to serve the file due to a high load)
the file is scheduled to be staged from mass storage (HPSS in our case).
For the full cycle to complete, xrootd has to firstly choose the best node for serving
a request. When the node is selected, the mssgwcmd command is executed with the
option to stat a file for the verification of the file’s existence inside MSS. If this is
passed successfully, the stagecmd is triggered to bring the file.
The definition of what constitute a ”best” node is arbitrary and the selection algorithm
will be explained in more details at the section 3.3.

3.2. ENABLING MASS STORAGE SYSTEM (MSS) ACCESS 31

Redirector Redirector layer

Redirection of a client

SupervisorSupervisor Supervisor Supervisor layer

Do you have a file /x/y/z.txt ?
Do you have a file /x/y/z.txt ?

Up to 64 nodes

First 64 servers Next 64 servers Next 64 servers

Dataserver layer

Question
Question

Question Question
Question

Question Question
Question

Question

Do you have a file /x/y/z.txt ?

User requests the file /tmp/x/y/z.txt
TFile::Open(“root:/redirector:1095/x/y/z.txt”)

/x/y/z.txt = unique in HPSS

MSS layerHPSS

Stage the file /x/y/z.txt

Figure 3.3: The overview of the xrootd installation with MSS access

3.2.1 Un-coordinated MSS requests

During the testing of MSS plugin, we performed a scalability test and have observed
that many data-servers may request data simultaneously, therefore fall into the
uncoordinated request trap. Figure 3.3 shows that each server in the cluster
can connect to HPSS in an uncontrollable manner and without any sophisticated
coordination between them.

By essence, HPSS is a robotic based machine with main task of mounting
tapes into a finite number of available drives where data can be read and transfer
on the disk cache. While the cache can be made larger enough no nor be a concern,
each request can come with the request for a file on a different tape and without any
other guidance, HPSS has to mount each tape separately for each file which can lead
to a excessive mounting of tapes as showed on Figure 3.4. Additionally, and since
all requests from our data-servers may come simultaneously, the number of the ftp
connections can accumulate as a linear function of the number of requests. This is
seen on Figure 3.5. Both problems lead to HPSS collapse and deadlock situation,
system ends up with zero aggregate throughput IO as seen on Figure 3.6. To

3.2. ENABLING MASS STORAGE SYSTEM (MSS) ACCESS 32

Figure 3.4: The exceeding of the tape mounting

Figure 3.5: The exceeding of the ftp connections

Figure 3.6: The aggregate IO from/in HPSS

3.2. ENABLING MASS STORAGE SYSTEM (MSS) ACCESS 33

overcome this problem which by itself, would not allow to enable the HPSS plugin
large data server environment, one has to search for a solution with main features
like:

• Coordination and queuing of requests

• Sharing access with other data management tools involving policy based autho-
rization with different priorities per user or group

• Sorting of file requests with effort of having as many file requests as possible on
the same tape and minimize tape mounts

• Keeping track of requests and re-queuing them in case of failure

• Asynchronous handling of requests to speed up the IO

All these requirements fulfill a system called the DataCarousel, which has been used
for past few years within the STAR framework and already mentioned in section 2.5.
A reader can have a objection that a single file restore within this scheme may be
slower than a direct pftp (parallel ftp) approach, but this is not usable in the large
scale illustrated above, even not mentioning the zero sharing of HPSS resource with
other tools.

Hence, we have integrated the DataCarousel into our xrootd installation by
re-writing mentioned the stagecmd script. The DataCarousel offering a Perl API (as
a Perl module), the xrootd plugin was rewritten to exploit the DataCarousel API
and pass the requests directly to the DataCarousel back-end system. The work-flow
could be described by three phases:

1. Construct and pass DataCarousel API request

2. Wait until either a timeout occurs or the DataCarousel brings the file into the
local cache

3. Return failure or success respectively

For simplicity, the script is just waiting for the appearance of the file in the local
cache. Since all requests to the DataCarousel are handled asynchronously, it would
be harder to track them in the system itself and figure out the logic depending on the
carousel internals state of the request. Finally, the figure 3.7 shows the final grained
architecture of our installation.

3.2.2 Creating a uniform name-space

In general, a name-space is an abstract container providing context for the items
(names, or technical terms, or words). Within a given name-space all items must
have unique names, although the same name may be used with a different meaning
in a different name-space.

3.2. ENABLING MASS STORAGE SYSTEM (MSS) ACCESS 34

Supervisor

First 64 servers Next 64 servers

Supervisor Supervisor

Next 64 servers

Redirector layer

Supervisor layer

Dataserver layer

Up to 64 nodes

DNS round robin

MSS layerHPSS

DataCarousel layer

Coordinates requests
(Sorting, re-queuing failures, ...)

Getting list of files to stage
(effort to be on the same tape)

DataCarousel

Figure 3.7: The Xrootd overview with DataCarousel integration

In the file systems, the name-space is a directory. It contains several files
which must have unique name within one directory. However, one can imagine that
a particular tree starting from a root prefix /xxx could be cloned (copied) to a
different device starting from a prefix /yyy. While from a file system perspectives,
the two trees together forms an aggregate name space itself a name space, files are
nonetheless identical one level up down in the tree starting from either /xxx or
/yyy. For all practical purpose, /xxx/A and /yyy/A may canonically be part of the
”same” name-space (there is a unique transformation between the two). In general,
the same name can reside in different directories located on one physical device or
machine within separate base-path. In UNIX world, the mounted directories are
many partitions representing physical devices (such as HDD) being attached to one
machine. In global view, the fun of creating a name-space is represented by many
physically independent machines within the one farm. For instance, if a farm has
1000 nodes, where each node has exactly 3 physical drives, there would be 1000 *
3 possibilities to place a file and therefore 3000 fundamentally diverse name-spaces.
This could be collapsed to one unique name space by creating a transformation such
as, making all separate tree appear as the same (in the same manner that stripping
/xxx and /yyy would make a new A/? unique name-space).
A distributed file system has to create a single uniform name-space as, this would

3.2. ENABLING MASS STORAGE SYSTEM (MSS) ACCESS 35

/data0
/data3

/data2/data1

symlink
symlink symlink

symlink

/home/starlib

Name-space: /home/starlib
Data-space: /data*

Figure 3.8: The single name-space within one node

allow removing the need to know the hardware layout detail, mount path, names
to device, and therefore decrease the number of entries in a replica catalog while
providing everything would be transparent to a user. But for the distributed data
management system, this means that a file A would need to be checked against each
element of the local device i.e. /data0/A, /data1/A etc. To overcome a case of a
single name-space within one node, xrootd offers mechanism of using UNIX symbolic
links managed by MPS module [49]. As shown on figure 3.8, each file has a record
of a file name in name-space directory (in example /home/starlib) and a record of
a file content in data-space directories (in this case /data∗). Both of these records
are together grouped using UNIX symbolic links. This approach creates an option
of having large data space within single-name space at one node and reducing the
number from 3000 possibilities just to 1000.

If one wants to further decrease the number of occurrence and create a single
name-space spanning over all nodes of the farm, it is convenient to the concept of
logical and physical files mentioned in section 2.5.

The representation of logical file names may vary depending on the represen-
tation, one possibility is to represent it as an MD5 sum of a file (name). The
drawback of this solution is the fact that while LFN could be stored in the Xrootd
name-space in any form it first involves an additional internal operation (a calcula-
tion, a catalog look-up for example) within each user’s request.he second problem
is that if the file is not found, it has to be fetched from the mass storage, which
implies an additional transformation of either the primary request to the HPSS
name-space or of the stored Xrootd name-space LFN into the HPSS name-space.
The second alternative, is to use the LFN to match its physical location in MSS
(shortly PFN(MSS)); as a single, MSS system at one site by itself ensure the
uniqueness of the name of a file (unique tree). This solution offers ability to have
many PFNs (xrootd server or MSS) under one reference (LFN) without any name
transformation operation when request is made. In other words, shall the user access
the Xrootd system using an LFN equivalent to the PFN(MSS), there would be only
a trivial transformation from the user to Xrootd (one related to path manipulation
as explained with /data1, /data2 and so on) and no transformation at all from the
user’s request to the HPSS request.

3.3. INCREASING I/O RATE FROM MSS 36

This solution also has its drawback, which assumes that there is only one
MSS within one site. This becomes a problem when name-space may cover many
sites spread over the world and with more than one MSS.
Therefore, we have to provide and re-architecture xrootd for having generic and
flexible LFN/PFN conversion module with ability of different implementations.
We designed the module as plug-able with the interface containing methods such
LFN2PFN or LFN2RFN, where RFN is a location of a file in MSS. This change
not only offers to use still the same logic as before, but also to create another logic
applicable for name-space covering many farms on different sites with more than one
MSS.

3.2.3 Coexistence with other Data management tools in
STAR

In order to integrate Xrootd in the STAR environment with the least disruption,
we needed to take into account the fact that ROOTD was in use within STAR
framework. Since ROOTD is in essentially PFN based, we had to allow xrootd to
understand both PFN-like access as well as LFN-like represented by PFN(MSS).
To achieve this goal, we could simply re-use and create an implementation of the
designed interface.

Figure 3.9 shows a server call stack within a user’s request to open a file.
User’s request to open a file is in form of XFN syntax, we refer this as the Xrootd
File Name, which encapsulates both scopes of different name-spaces, the ROOTD
PFN-like as well as XROOTD LFN-like. Client makes a request to the server through
the xrootd protocol, when request is accepted, the hunt for the file starts. The
LFN/PFN module comes into the scene during the calling of the ”open ufs” function.
The server checks firstly whether the XFN is PFN-like or secondly if it validates as
a LFN. If none of these operations are successful, the file is scheduled to be staged
from MSS. This involves the check whether the file is already being staged from MSS
or has been seen and failed. If not, server will firstly check existence of the file in
MSS using mssgwcmd command described at previous section 3.2. When the file is
presented in MSS, server creates new thread devoted for staging, triggers execution
of stagecmd and registers it in the list of pending requests. When the registration is
done, it delays a client for the specific time. After the specified time, client repeats
the initial request. When staging is successful, the server would succeed in second
check of the LFN/PFN module, whether the file is presented in xrootd name-space.
Our approach involved one additional UNIX stat() operation of a file and therefore
didn’t introduce any performance bottleneck.

3.3 Increasing I/O rate from MSS

So far, the whole work was focused on describing an effort of having a fully functional
and stabilized version by starting with a basic installations, continuing with enabling

3.3. INCREASING I/O RATE FROM MSS 37

Client side

Server side

XrdXrootdProtocol::accept

XrdOfsFile::Open

XrdOssFile::Open

XrdOssSys::Insert_PendList

No

Wait

XrdOssSys::Pending_State

Yes
No

Is pending ?

Seen before ? State ?Yes

No
Failure

Success

Wait

hpss_talk.plPERL processXrdOssSys::MSS_Stat

In MSS ? NO

PERL process hpss_stage.plXrdOssStage::Stage_Async

Asynchronous handling (threads)

Yes

XrdOssSys::Open_ufs

No

XFN PFN

XFN LFN

Yes

Yes

Success Failure

Requests a “file” in XFN syntax

X
ro

ot
d

pr
ot

oc
ol

Figure 3.9: The call stack of the server side within a user’s request

3.3. INCREASING I/O RATE FROM MSS 38

MSS access and its stabilization to a scalable solution in high request demand regime.
The next natural step would be focus on delivering high-performance and this involves
tuning of IO throughput rate within the system and from MSS.
During the testing of MSS plugin with DataCarousel, we have observed that the IO
throughput from MSS is affected by selecting still the identical server several times
of selection. This theory was even confirmed by trying to increase the IO throughput
with increasing the number of threads devoted for staging per one node. There was
no difference in IO throughput between 2 threads or 30 threads.
Thereby, we started to focus on the mechanism of selecting a server for the file restore
and related topic of load balancing among the multiple choices represented by the
individual servers.

3.3.1 Load balancing and server selection algorithm

Since we started to talk about selecting a node for fulfillment of requested operation,
we have to directly deal with the concept of load distribution between collaborating
nodes. Indeed, a distributed data access system can be in the situation where more
than one choice can be available to fulfill a particular incoming request (e.g more
than one replica of the file or selecting a server for the file restore).

The main purpose of load distribution is to improve the performance of the
distributed system, usually in terms of response time or resources availability spread
over many collaborating nodes. A side effect of this deals with the benefits coming
from the distribution of the system itself, in the form of additional reliability or
larger storage space or computing power. The problem of distributing a load
between collaborating nodes is related to a wider concept of resource allocation.
The are two main approaches for the attribution of the system load and resource
allocation in distributed systems [50], static and dynamic load distribution. The
static load distribution assigns a work to hosts probabilistically or deterministically,
without considering the system’s status or the events coming from it, where dynamic
distribution monitor the workload and hosts for any factors that may affect the
choice of the most appropriate assignment and distribute the work accordingly.

Static approach is useful only when the workload can be accurately character-
ized and where the load’s scheduler is in control of all activity, or is it at least
aware of a consistent background over which it makes its own distribution. If
the background load is liable to fluctuations, or the characteristic of the single
cooperating nodes can vary independently, some problem arise, which usually cannot
be solved by means of unique static behavior.
On the other hand dynamic distribution seeks to overcome the problems of relying
on how to decide which system workload may be assigned to each host for the
best representation [51]. This approach tries to incorporate two factors, firstly the
resources currently available at a host and secondly the resources required by the
processes being distributed.

For the current available resources, this is reflected in xrootd by the definition
of a ”load” composed of 5 factors for assembled within a generic policy. Ideally,

3.3. INCREASING I/O RATE FROM MSS 39

the combination of those 5 factors will be able to reflect most common computer
environments. Those are:

• CPU usage - percentage of cpu being used at the host

• Memory usage - the percentage of memory being used at the host

• Paging usage- the percentage of paging load being used at the host

• Runtime usage - the percentage of run-time usage (e.g how long the system
has been running, how many users are currently logged on)

• Network usage - the percentage of network resource being used at the host

For resource required by the processes being distributed, it is simplest to reflect two
factors related to xrootd architecture and request work-flow:

• Number of allocations - How many times the host was selected for a file
restore

• Number of redirection - How many times the host was selected for opening
a particular file located on a host

First consideration involves a flexible scheduling algorithm based on combination
of the mentioned 5 factors, where each xrootd administrator can set up different
thresholds for computing the overall workload. Indeed, these flexible computations
give a power of being able to build a ideal dynamic distribution of the load among
the cluster. For a realization of this approach, see the subsection 3.3.2.

There still remains the question: ”How the server is selected?”. Figure 3.10
has been designed to reflect the client interaction with the server side, mainly
representing server’s side work-flow of the selection algorithm.

When a client contacts a redirector node through the xrootd protocol, xrootd
part of the node requests its olbd through the olbd protocol to locate a file. Olbd
checks whether the file has been seen before by looking into its cache, if not and the
file is new, it is added into a cache and the manager broadcasts a query for the file
to all of its subscribers that have declared a capability to handle files.
The client is then asked to repeat the requests after a fixed amount of time during

which responses are collected by all the managers/supervisors which propagated the
message to their cell. Data-servers which has the file respond affirmatively, otherwise
stay silent.
From this process, a list of 0 or more data servers holding a file is determined and
when the query is resolved, two cases can happen:

1. primary selection - one or more replicas of the file exist on the nodes

2. secondary selection - no replicas on any nodes, a server has to be chosen for the
file restore from MSS

3.3. INCREASING I/O RATE FROM MSS 40

OLBD XROOTD

ClientServerXrootd processOLBD process

EthernetFile descriptor

Redirector node

XrdOlbServer::do_Select

Select a server

XrdOlbCache::AddFile

XrdOlbManager::BroadCast

W
ai

t

OLBD protocol XROOTD protocol Request
to open a

file

XrdOlbManager::SellByLoad

StateMask

Max load Min free
space

Coextensive
load ?

of
allocations

Greater
load

1 2

34

5

6 6

XrdOlbManager::SellByLoad

StateMask

Max load Min free
space

Coextensive
load ?

of
redirections

Greater
load

1 2

34

5

6 6

R
ed

ire
ct

io
n

of
 c

lie
nt

 to
 th

e
se

le
ct

ed
 s

er
ve

r

XrdOlbManager::CalcDelay

One or more
replicas
exists on

nodes

Secondary selection

No replicas
on nodes

(one at MSS)

XrdOlbCache::GetFile

Seen before ?

Type of mask ?

Yes

Wait

selected

No

selectedOverloaded, suspende etc. ?

P
rim

ar
y

se
le

ct
io

n

Figure 3.10: The server selection algorithm

3.3. INCREASING I/O RATE FROM MSS 41

In both cases, olbd has a result stored in server mask, which server the purpose of
being able to make a selection and decision in the fastest possible way. The manager
is going through all of it’s subscribers in a loop and applies several conditions:

1. Mask has to match

2. Check for offline or suspended server

3. Check for minimum free space available at node

4. Check if the actual load of the server doesn’t exceed the configured maximal
load

If one of these conditions is false, the manager remembers it and uses this information
for the final answer to the client. If the server in the loop went through all conditions
without blemish and there was previously a suitable server, it would check for the
coextensive load. This means whether a difference of server’s loads is within a specified
and configurable range. Within this configurable range (or margin), the workload of
the servers are considered as identical and the manager needs to apply second factor
of load distribution to select one, the second criterion is the resource required by
the processes being distributed. In case of a file restore, it is either the number of
allocations, or the number of re-directions. When the cycle is finished, the manager
can delay a client for a fixed time computed from collected information such as number
of overloaded nodes or the number of suspended nodes. Alternatively, it returns the
answer with a redirection to a server.

3.3.2 Investigating workload of the system

The previous section briefly discussed a general overview on how to build a flexible
load distribution in the distributed file system and how this load enters into the
selection of a data server. We mentioned the fact that analysis jobs are the creators
of a load on the machine.
The 5 parameter space mechanism described in the previous section certainly allows
to reflect most environments, e.g. CPU-bound environments may have the biggest
weight on the CPU factor, memory-bound environments will have the highest benefit
using the memory factor.
The fundamental questions still remains: ”How to figure out which factors-bound is my
environment ?”. For resolving this issue, we have measured and collected statistic of
all workload factors at each node of the Linux farm. Those results helped to assemble
the final shape of the formula and determine factors-bound of the STAR environment.

For the best representation, visualization and aggregation of the all results
from the farm, we computed and prepare a plot with x-axis as the percentage of the
measured load factor, while the y-axis value is a number of nodes which had the same
particular value of the load. Figure 3.11 shows example plots for measurements.
Basically, from those 5 factors, two of them can heavily affect IO throughput of one
node, it is memory and paging factor. In most today’s operating systems, the system
which is lacking enough memory would start paging on the local HDD and will affect

3.3. INCREASING I/O RATE FROM MSS 42

(a) CPU factor (b) Memory factor

(c) Network factor (d) Paging factor

(e) Run-time factor (f) Overall plot with all factors

Figure 3.11: Factors-bound investigation

3.3. INCREASING I/O RATE FROM MSS 43

IO throughput being scheduled to this system. The second effect of paging could also
affect the CPU itself (intense swapping could use a significant amount of resources
and lead to IO thrashing). Perhaps of a lesser importance, we imagine that the factor
to formula would be a CPU factor could affect the global performance as if none
are available, it would impact the data server process (xrootd and olbd) themselves.
Therefore as a conclusion, we assembled our empirical formula with choosing as the
biggest impact on the memory, paging and cpu factors along with other consideration
as follow:

• 20% of CPU factor

• 10% of network factor

• 20% of paging factor

• 10% of runtime factor

• 40% of memory factor

The network factor of the load is somehow self-correlated to the overall distribution,
since using xrootd introduces higher number of network traffic by reading the
file remotely through the network. We have set this threshold very low and this
correlating factor will need additional work in future to determine its exact impact.

The figure 3.12 serves as the verification of the right chosen values and possi-
ble corrections and fitting. Our effort was not only assemble the load thresholds, but
also to create a perfect distribution of load imminent to the Gauss distribution.
Since, the observation was provided statically and at the one moment of the farm’s

Figure 3.12: The overall workload seen by xrootd

workload, a large amount of statistical data needs to be collected to ensure a right
setting of the thresholds which is stable to load fluctuations. These statistics were
gathered and computed by hour, day and week periods. Additionally, to check if
the overall load doesn’t fluctuate too much in time, the 3-D representation of load,
with the third axis being the dimension of ”moving in time”. It has been prepared in
the same statistic’s periods. The figure 3.13 shows hour statistic. For more statistic
plots, please see the appendix A.

3.4. MONITORING THE BEHAVIOR OF XROOTD 44

Figure 3.13: The 3-D distribution of the farm workload seen by Xrootd

3.4 Monitoring the behavior of xrootd

After the system is tuned for distributing and balancing the load with an expectation
of a performance increase, one needs to be able to monitor the behavior of the system
with increased number of requests.

The simplest solution is to use the system in a production mode within the
STAR framework and consequently measure the scalability within user’s requests.
The scalability in this sense means, how the system is capable to manage a mass
of requests. Moreover, preferable and interesting information would be, how the
system is efficient to deal with load of requests and still being able to serve additional
incoming requests without any disruption or performance degradation.

Monitoring the behavior of the distributed system involves dynamic extraction
of information about the interactions among many nodes, collecting this information,
and presenting it to users in useful format. Within the allocated time, we did not
carry out an exhaustive study but concentrated mainly on the behavior of the MSS
plugin and its efficiency.

Easily achievable information from the whole system were:

A number of all requests coming to xrootd

B number of successful requests to HPSS

C number of failed requests to HPSS

These three pieces of information helped to easily obtain and form four attractive
informative plots reflecting the behavior of the system as a function of time:

1. Number of requests moving in time

3.5. MEASURING AND COMPARING THE PERFORMANCE 45

2. Percentage of failures seen by the server, computed as: C/A

3. Percentage of failed requests over all requests to HPSS, computed as: B/(B+C)

4. Percentage of HPSS requests over all requests to XROOTD, computed as:
(B+C)/A

The illustration of this effort is visible at the figure 3.14.
As an important note, users couldn’t access HPSS files directly, HPSS plugin served

as fault-tolerance retrieval when the node was down or didn’t respond. Hence, the
results shows that system is scalable, where the errors and using of HPSS plugin for
file restore (file wasn’t previously found on nodes) is very rare and not dependent on
number of requests.

For debugging and testing purposes of the HPSS plugin, the figure 3.14(e)
shows HPSS plugin errors and their relative proportions. The most significant
portion of errors forms the error that file wasn’t brought by the DataCarousel into
disk cache within the timeout period of the xrootd plugin. Most errors occurred due
to the absence of a free space which, although overall rare, are not expected events
since we explained in section 3.3 that Xrootd includes a free space criteria before
selecting a data-server. The understanding of this issue is scheduled for the future
work.

3.5 Measuring and comparing the performance

The success of the data distributed system relies on the ability to support a
reasonable increasing number of users with stable performance of individual file
operations and therefore achieve scalability of the system. This will certainly encour-
age its use and facilitate the migration of users from their addictions to other systems.

The performance of file servers or distributed systems is usually measured as a
time of single operation to read/write a chunk of data, sometimes extended with
many concurrent operations at one point of a time. This evidently reflects a
performance of one independent server being detached from the global view of many
cooperating servers in distributed environment, but not showing the aggregated
performance of the whole system. It implies a need for aggregate picture of whole
system in concurrent fashion and under a heavy load of many requests. Additionally,
the picture needs to be taken at the same environment and under identical conditions
for a comparison with other storage solutions, i.e. same kind of files (structure,
compression etc.), same technique of reading, same global workload of environment
etc. For achievement of all these requirements within the STAR framework, the
aggregation unit was chosen as a one job reading sequentially physics events from
structured files within ROOT framework. It definitely ensures requirements of the
same technique of reading and same kind of files.

While the single server measurements are usually collected on the dedicated
hardware, without any load of other processes, the effort is to see a behavior of the

3.5. MEASURING AND COMPARING THE PERFORMANCE 46

(a) Number of requests moving in time (bin=5
min)

(b) Percentage of failures seen by server side of
XROOTD

(c) Percentage of failed requests over all requests
to HPSS

(d) Percentage of HPSS requests over all requests
to XROOTD

(e) Portions and types of HPSS plugin errors

Figure 3.14: Monitoring behavior of xrootd

3.5. MEASURING AND COMPARING THE PERFORMANCE 47

system in real world and scenario, i.e load caused by other users and processes. It will
give a preview of the system’s load-balancing efficiency. To ensure the requirement
of the same global workload and load balancing efficiency, one has to measure and
compute many independent tests at different times and therefore diverse workload’s
states of the environment.

Finally, as the global view of the performance and scalability of the system
would be a fashion of increasing number of jobs and their aggregate IO throughput.
To capture this picture, an additional aggregate and advanced algorithm is needed,
since the view is based on many concurrent and subsequent jobs running at the
same time which is very difficult to achieve in share environment. These share
environments are well-known with their queues introduced in the batch systems and
triggering the execution of jobs based on different conditions and policies of the
particular installation.
As a summary, the measurement will produce following information:

• a starting and ending times of the mutually different jobs executed in different
times of a test

• an average IO throughput of the particular job

• a job’s competency to particular test of measurement

• a length of the particular test indicated by start time and end time of the first
and the last collected job

• an average length of one job in the test

When each job can start and finish in different time, the aggregation of simulta-
neously running jobs becomes very difficult. The figure 3.15 shows 4 fundamental
possibilities how the job can participate within a time range, where Θ is an average
length of the job and Ti , Tj are start, end time of a time range. To overcome the
hardness of aggregating simultaneous jobs within a time range, we fetched a formula
3.1 counting a benefit of each job covering 4 mentioned possibilities within specified
time range:

Job′s benefit =
min (Tj , ejob)−max (Ti , sjob)

Tj − Ti

(3.1)

where

(i) Ti , Tj are start and end time of a time range

(ii) sjob , ejob are start and end time of a job

As a proof, lets establish a case 4 as following, sjob = Ti and ejob = Tj, which is giving:

Job′s benefit =
Tj−Ti

Tj−Ti
= 1 ∗ 100 = 100%

3.5. MEASURING AND COMPARING THE PERFORMANCE 48

Ti TjΘ

Figure 3.15: Four fundamental possibilities of job’s participation within a time range

All jobs running within a specified time range could be selected by the following query:

(sjob ≥ Ti

⋂
sjob < Tj)

⋃
(ejob > Ti

⋂
ejob ≤ Tj)

⋃
(sjob < Ti

⋂
ejob > Tj)

For representation of all test, the contour plots has been chosen, where x-axis is
number of jobs and y-axis is aggregated IO related to particular number of jobs. It
gives not only a opportunity to see most frequent values which has been measured and
seen, but also it helps to somehow reflect non-dedicated environment for measurement.
In previous chapters, we mentioned that each request (not previously presented at
cache) in xrootd needs to be delayed for fixed time. This time can actually slow
the performance comparing to other systems. Therefore, we were interested to see 2
different cases:

• read rate - measured IO rate without open and close delays

• open rate - measured IO rate with open and close delays

The other storage solutions available within STAR framework, which we could
measured were: Rootd and Panasas exposed to users via NFS protocol.

The figure 3.16 shows results from all run tests on all mentioned storage solu-
tions. These results show that xrootd scales with number of jobs as the best compare
to all other solutions and even has most values placed higher than others. This signs
that even commercial and very expensive solution (Panasas) with its storage area
network (SAN) model has poorer results than tenfold cheaper solution (xrootd) with
its Direct Attached Storage (DAS) model.
Moreover, it is observable, that xrootd with its fixed delay time has still better
performance comparing to other solutions.

3.5. MEASURING AND COMPARING THE PERFORMANCE 49

(a) NFS aggregate IO open rate (b) NFS aggregate IO read rate

(c) Rootd aggregate IO open rate (d) Rootd aggregate IO read rate

(e) Xrootd aggregate IO read rate (f) Xrootd aggregate IO read rate

Figure 3.16: Aggregate IO comparison of several storage solutions

Chapter 4

Improving Xrootd

50

51

While the Xrootd seems to perform extremely well and satisfy STAR’s most
immediate needs, such as a storage solution serving high-performance, scalable,
fault-tolerant access to their physics data, it could itself be improved and extended.
For example, Xrootd does not move files from one data-server to other data-server
or even from one cache to other cache within one node, but always restore files from
MSS. This may be slow and inefficient in comparison with transferring the file from
other node or cache, not involving any tape mount or other delays intrinsic to MSS.
Additionally, the system is not able import files from other space management
systems (as dCache, Castor [52]) or even across the grid. In a large scale pool of
nodes, if ”ALL” clients ask for a file restore from MSS, the system would exhibit
a lack of coordination of accesses MSS resources as it lacks a request queue. This
advanced feature is needed for any coordinated requests and is especially important in
a shared access environment where other tools, such as bulk data transfers to remote
sites, may also perform MSS staging requests. There are no advanced reservations
of space, other users can collate the space in the meantime while the restore from
MSS operation is still ongoing (in fact, we have observed and reported in section 3.4
failures related to the lack of space, likely related to such timing issues). There are
no extended policies per users or role based giving advanced granting of permissions
to a user. There is no concept of pinning the files, requested files can be evicted
to release a space. This makes un-practical additional features such a pre-staging
(essential for efficient co-scheduling of storage and computing cycles).

In addition, there are other middle-ware designed for the space management
and only for the space management. Specifically, the grid middle-ware component
called Storage Resource Managers (SRMs) [53], [54], [55] has for function to
provide dynamic space allocation and file management on shared distributed storage
systems. SRMs are designed to manage space, meaning designed to negotiate and
handle the assignment of space for users and also manage lifetime of spaces. In
addition of file management, they are responsible for managing files on behalf of user
and provide advanced features such as pinning files in storage till they are released
or also even manage lifetime of files that could be removed after specific time. SRMs
also manage file sharing with configurable policies regulating what should reside on
storage or what to evict. One of the powerful features of SRMs is ability of bringing
the files from other SRMs, local or at remote locations including from other site and
across the Grid . In fact, SRMs defines a fully specified protocol aims to handle and
negotiate requests and movements. Note that SRMs themselves do not move files:
they negotiate space and orchestrate file movements using standard transfer tools
(ssh, gsiftp, bbftp for example) and it keeps a track of transfers and recover them
from failures.

SRMs comes in three flavors of storage resource managers:

• Disk Resource Manager (DRM)

– manages one or more disk resources

• Tape Resource Manager (DRM)

– manages the tertiary storage system (e.g. HPSS)

4.1. XROOTD - SRM ARCHITECTURE DESIGN 52

• Hierarchical Resource Manager (HRM=TRM+DRM)

– stages files from tertiary storage into its disk cache and manage both re-
sources

On the other hand, while SRMs do manage space efficiently and can talk to other
SRM (bringing for example files from other caches or SRM-aware tools), they know
nothing of load balancing capabilities and they do not perform data aggregation or
provide any global view of storage space, all of which was showed as a key advantage
of Xrootd. We therefore proposed to leverage these technologies and integrate to
Xrootd and SRM back-end for managing space.

4.1 XROOTD - SRM architecture design

Both systems have their own inner architecture and the task of integration lies on
the question on how to bind them together. Fortunately, Xrootd with its flexible
layered architecture and interfaces [36] allows us to easily replace unwanted ones by
another implementation incorporating SRM protocol has it is showed in figure 4.1.
Xrootd then remains responsible for managing disk cluster and the access to the

xrd

xroot

ofs authorization

oss / srm

DRM

authentication
XROOTD

HRM

odc Optional
(included in
distribution)

Additional

Protocol and Thread Manager

Protocol Layer

Filesystem Logical Layer

Filesystem Physical Layer

Filesystem Implementation

Application

Figure 4.1: XROOTD - SRM components interaction

global name-space, DRM will be accountable for managing disk cache and HRM will
be responsible for staging files from MSS. In other words xrootd becomes a client of
SRMs.

While there still remains a lot to discuss, a first design and the implementation of
xrootd server interaction with HRM has been done. Before further description, we
have to define terms being used in SRM terminology with knowledge of previously
defined LFN/PFN:

• File names (forms of PFN, but have here additional dimension to satisfy the
SRM needs of an explanation)

4.1. XROOTD - SRM ARCHITECTURE DESIGN 53

– SFN - a file name assigned by a site to a file. Normally, the site file name
will consist of a ”machine:port/directory/file”

– TFN - the ”transfer” file name of the actual physical location of a file that
needs to be transferred. It has a format similar to an SFN.

• URL - represents a location of a file on the grid

– SURL - a ”site” URL which consists of ”protocol://SFN ”. The protocol
can vary, since the SRM supports protocol negotiation. For communication
with srm, the protocol is srm, other variant is for example gridftp.

– TURL - a ”transfer” URL that an SRM returns to a client for the client
to ”get” or ”put” a file in that location. It consists of ”protocol://TFN”,
where the protocol must be a specific transfer protocol selected by SRM
from the list of protocols provided by the client

Conceptually, since the HRM is a server, the xrootd server need to understand and
make the calls to the API of HRM client exposed by the CORBA technology.
The calls have the following semantic:

• srmGet - given a source SURL (site-URL), an srmGet will get a file from the
source site, pins the file for a lifetime (a config file parameter) and return a
TURL (transfer-URL). If the file is already in cache, it simply pins the file, and
returns a TURL. It is expected that after the file is used by the xrootd client,
it will be followed with an srmRelease.

• srmPut - an srmPut is for the purpose of pushing a file into the cache. The
DRM will allocate space, and return a TURL where the client can put the file.
It is possible to specify in the call a target SURL which is the final destination
of the file. It is expected that after the file was put into the disk by the xrootd
client, it will be followed with an srmPutDone.

• srmCopy - given a file in the disk cache, an srmCopy will copy the file to
a remote location using a target SURL. With xrootd, this can be used for a
request to archive a file into MSS, that is in the disk cache.

• srmModify - this is a request to change the content of an existing file. The
request may be to modify the existing content or append to it. The file is
expected to be in the cache. If it is not found in the cache an error is returned. To
get a file that is not in the cache, an srmGet should precede the srmModify call.
The DRM will allocate extra space if size is specified, or assign the maximum
default allowed. Similar to an srmPut, it is possible to specify in the call a
target SURL which is the final destination of the file. It is expected that after
the modification to the file was finished, it will be followed with an srmPutDone.

• srmRemove its funcition is to remove a remote file from the MSS. Thus, a
delete request by the client will generate an srmRemove with the target SURL.
To remove the file in the disk cache only an srmRemove with the LFN should
be provided. To remove from disk cache and the archive, two srmRemove calls
should be made, one with LFN as a parameter, and one with the target SURL

4.1. XROOTD - SRM ARCHITECTURE DESIGN 54

All mentioned calls can xrootd use for reading a file from MSS, writing a file into
MSS or modifying the files in MSS. The table 4.1 shows the summary of all available
operation and forms of the particular SRM calls.

Table 4.1: Summary of all functions available to xrootd
Type of operation Form of the SRM call

Copying into cache srmPut(FID=LFN, source=null, target=SURL)
Remove from cache srmRemove(FID=LFN)
Remove from MSS srmRemove(FID=SURL)
Copying into MSS srmCopy(FID=LFN, source=null, target=SURL)

Modifying without archive srmModify(FID=LFN,source=null,target=null)
Modifying with archive srmModify(FID=LFN,source=null,target=SURL)

Release a file srmRelease(requestID,FID=SURL)
Finish putting to cache srmPutDone(requestID,FID=SURL)

Finish modifying in cache srmPutDone(requestID,FID=SURL)
Abort request srmAbort(requestID)

Status of an operation srmStatus(requestID,FID=SURL)

On xrootd side, the oss component has been extended as a generic plugin with virtual
C/C++ functions. It offers a possibility to create a new plugin calling the mentioned
SRM calls within HRM API written in C++.
This initial approach leads to have a large centralized cache visible to all nodes and
managed by HRM. We have successfuly deployed the HRM server in front of the
BNL HPSS and tested all mentioned calls implemented in new xrootd plugin by
reading and writing files from/to HPSS.

The next work would be focused on a capability of transferring files from HRM cache
to the DRM deployed on each node of the farm. Therefore, to have an ability of the
dynamically populated distributed disk using HRM (HPSS), managed by DRM (disk
caches) and controlled by xrootd.

Chapter 5

Conclusion

55

56

In this work we have studied some key aspects of architectures, topologies, technolo-
gies, methods and algorithms aimed to fulfill the task of managing and accessing
very big amounts of data. Our studied case was carried within the RHIC/STAR
experimental and analysis environment, one of the biggest High Energy and Nuclear
Physics (HENP) experiments producing PetaByte of data per year.

We started with a short description of the STAR experiment, continued with
its expectation of data sizes to the future and the available computing resources
which experiment can use. We discussed different topologies (centralized, distributed)
of data storage in the highlight of the performance clusters as well as differences,
advantages, disadvantages of hardware and software solutions with application to
real examples of the storage solutions.

While STAR has chosen a distributed topology as their primary storage so-
lution many years ago, we discussed their current data model and showed its
bottlenecks leading to the search for other (better) distributed storage solution.
We have discussed two diverse distributed solutions (dCache [31] and Xrootd [36])
well-known in HENP environment. Our discussion was focused on the architectures
of these two systems with aspect to performance, scalability and name-space ap-
proaches. The result of this discussion evolved toward the main work of this report.
It is a performance and scalability evaluation of xrootd system in very large scale.

For the achievement of this goal, we started with basic deployment of the sys-
tem on the 300 nodes, followed by enabling and stabilization of the access to the tape
system. Big portion of the work was dedicated to approaches of tuning the IO, such
as load balancing in distributed environment. We showed how to achieve ideal load
distribution of the system and therefore increase the IO throughput. The scalability
of the system has been proved by integrating the system into STAR framework and
monitor its behavior under many user’s requests.

To discover the question of high-performance, we made a measurement of ag-
gregate IO of all available storage solutions within STAR framework. We have
observed from the results, that xrootd performs best comparing to other solutions,
even to expensive centralized storage solution represented by Panasas [14]. Therefore,
we have showed that XROOTD is excellent high-performance and scalable solution
for serving large amount of data.

In the last chapter, we have presented our improvements to Xrootd in order to have an
access to Grid and therefore having capability of files spread on other sites or clusters.

Appendix A

Load statistic

57

58

(a) Week 22 (b) Week 23

(c) Week 24 (d) Week 25

(e) Week 26 (f) Week 27

Figure A.1: Summary of all individual load factors gathered on the STAR
CAS cluster (cluster dedicated for analysis jobs)

59

(a) Week 22 (b) Week 23

(c) Week 24 (d) Week 25

(e) Week 26 (f) Week 27

Figure A.2: Xrootd load distribution statistic on the STAR CAS cluster
(cluster dedicated for analysis jobs showing very stable distribution over many weeks)

60

(a) Week 22 (b) Week 23

(c) Week 24 (d) Week 25

(e) Week 26 (f) Week 27

Figure A.3: 3-D Xrootd load distribution statistic with time dependency on
the STAR CAS cluster (cluster dedicated for analysis jobs showing very stable
load distribution over many weeks)

61

(a) Week 32 (b) Week 33

(c) Week 34 (d) Week 35

(e) Week 36

Figure A.4: 3-D Xrootd load distribution statistic with time dependency on
the STAR CRS cluster (cluster dedicated for reconstruction jobs showing lots of
fluctuations introduced by the identical behavior of reconstruction’s jobs)

Bibliography

[1] STAR experiment. [Online]. Available: http://www.star.bnl.gov

[2] Relativistic Heavy Ion Collider. [Online]. Available: http://www.bnl.gov/RHIC

[3] Brookhaven National Laboratory. [Online]. Available: http://www.bnl.gov

[4] Quark Gluon Plasma. [Online]. Available: http://en.wikipedia.org/wiki/
Quark gluon plasma

[5] T. Christiansen and N. Torkington, Perl Cookbook. O’Reilly & Associates, Inc.,
1998.

[6] L. Wall and R. L. Schwartz, Programming perl. O’Reilly & Associates, Inc.,
1994.

[7] J. Vromans, Perl (Pocket reference). O’Reilly & Associates, Inc., 2002.

[8] P. DuBois, MySQL. Sams Publishing, 2005.

[9] A. Descartes and T. Bunce, Programming the perl DBI. O’Reilly & Associates,
Inc., 2000.

[10] A. Inc., “A storage architecture guide,” STORAGEsearch.com, May 2000.

[11] D. Alabi, “NAS, DAS, SAN ? - choosing the right storage technology for your
organization,” STORAGEsearch.com, May 2004.

[12] D. Patterson, G. Gibson, and R. Katz, “A case for redundant arrays of inexpen-
sive disks (RAID),” in Proc. Int’l Conf. Management of Data. ACM, 1989, pp.
109–116.

[13] J. May, Parallel I/O for High Performance Computing. Academic press, 2001.

[14] D. Nagle, D. Serenyi, and A. Matthews, “The panasas activescale storage cluster -
delivering scalable high bandwidth storage,” in Proc. of the ACM/IEEE SC2004,
November 2004.

[15] Panasas file system (panfs). [Online]. Available: http://www.panasas.com/
panfs.html

[16] P. Schwan, “Lustre: Building a file system for 1000-node clusters,” 2003.
[Online]. Available: citeseer.ist.psu.edu/schwan03lustre.html

62

http://www.star.bnl.gov
http://www.bnl.gov/RHIC
http://www.bnl.gov
http://en.wikipedia.org/wiki/Quark_gluon_plasma
http://en.wikipedia.org/wiki/Quark_gluon_plasma
http://www.panasas.com/panfs.html
http://www.panasas.com/panfs.html
citeseer.ist.psu.edu/schwan03lustre.html

BIBLIOGRAPHY 63

[17] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” in Proc. of the First Conference on File and
Storage Technologies (FAST), Jan. 2002, pp. 231–244. [Online]. Available:
citeseer.ist.psu.edu/schmuck02gpfs.html

[18] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,” 2003.
[Online]. Available: citeseer.ist.psu.edu/ghemawat04google.html

[19] D. Roselli, J. R. Lorch, and T. E. Anderson, “A comparison of file
system workloads,” pp. 41–54. [Online]. Available: citeseer.ist.psu.edu/
roselli00comparison.html

[20] P.Jakl, et al., “From rootd to xrootd, from physical to logical files: experience on
accessing and managing distributed data,” in Proc. of Computing in High energy
and nucler physics (CHEP’06), 2006.

[21] Rootd. [Online]. Available: http://root.cern.ch/root/NetFile.html

[22] R. Brun and F. Rademakers, “Root - an object oriented data analysis frame-
work,” in Proceedings AIHENP’96 Workshop, Lausanne. Nucl. Inst. & Meth.
in Phys. Res. A 389 (1997), Sep. 1996, pp. 81–86.

[23] High Performance Storage System. [Online]. Available: http://www.
hpss-collaboration.org/hpss/index.jsp

[24] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic
metadata management for petabyte-scale file systems.” [Online]. Available:
citeseer.ist.psu.edu/698264.html

[25] STAR computing. [Online]. Available: http://www.star.bnl.gov/STAR/comp/

[26] G. Singh, et al., “A metadata catalog service for data intensive applications,”
2003. [Online]. Available: citeseer.ist.psu.edu/singh03metadata.html

[27] V. Mandapaka, C. Pruneau, J. Lauret, and S. Zeadally, “Star-scheduler: A
batch job scheduler for distributed i/o intensive applications,” 2004. [Online].
Available: http://www.citebase.org/abstract?id=oai:arXiv.org:nucl-ex/0401032

[28] T. E. Anderson, et al., “Serverless network file systems,” in SOSP ’95: Proceed-
ings of the fifteenth ACM symposium on Operating systems principles. New
York, NY, USA: ACM Press, 1995, pp. 109–126.

[29] E. Levy and A. Silberschatz, “Distributed file systems: concepts and examples,”
ACM Comput. Surv., vol. 22, no. 4, pp. 321–374, 1990.

[30] C. Kesselman and I. Foster, The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers, November 1998. [Online]. Available:
http://www.amazon.fr/exec/obidos/ASIN/1558604758/citeulike04-21

[31] P. Fuhrmann, “dCache, the commodity cache,” in Proc. of Twelfth NASA God-
dard and Twenty First IEEE Conference on Mass Storage Systems and Tech-
nologies, 2004.

citeseer.ist.psu.edu/schmuck02gpfs.html
citeseer.ist.psu.edu/ghemawat04google.html
citeseer.ist.psu.edu/roselli00comparison.html
citeseer.ist.psu.edu/roselli00comparison.html
http://root.cern.ch/root/NetFile.html
http://www.hpss-collaboration.org/hpss/index.jsp
http://www.hpss-collaboration.org/hpss/index.jsp
citeseer.ist.psu.edu/698264.html
http://www.star.bnl.gov/STAR/comp/
citeseer.ist.psu.edu/singh03metadata.html
http://www.citebase.org/abstract?id=oai:arXiv.org:nucl-ex/0401032
http://www.amazon.fr/exec/obidos/ASIN/1558604758/citeulike04-21

BIBLIOGRAPHY 64

[32] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, “Xrootd - a highly scalable
architecture for data access,” in Proc. WSEAS’05, 2005.

[33] P. Fuhrmann, “dCache, a distributed data storage caching system,” in Proc. of
Computing in High energy and nucler physics (CHEP), 2001.

[34] P. Fuhrmann, “dCache, lcg se and enhanced use cases,” in Proc. of Computing
in High energy and nucler physics (CHEP), 2004.

[35] P. Fuhrmann, “dCache, the overview,” White paper, 2004. [Online]. Available:
http://www.dcache.org

[36] A. Hanushevsky, A. Dorigo, and F. Furano, “The next generation root file server,”
in Proc. CHEP’04, 2004.

[37] A. Hanushevsky and H. Stockinger, “Proxy service for the xrootd data server,”
in Proc. SAG’04, 2004.

[38] Deutsches elektronen-synchrotron (DESY). [Online]. Available: http://www.
desy.de

[39] Fermi national accelerator laboratory (fermilab). [Online]. Available: http:
//www.fnal.gov/

[40] ROOT framework. [Online]. Available: http://root.cern.ch

[41] F. Furano, “Large scale data access: Architectures and performance,” Ph.D.
dissertation, University of Venezia, Department of Informatics, January 2006.

[42] A. Hanushevsky and B. Weeks, “Scalla: Scalable cluster architecture for low
latency access, using xrootd and olbd servers,” White paper, 2006. [Online].
Available: http://xrootd.slac.stanford.edu/papers/Scalla-Intro.htm

[43] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer content
distribution technologies,” ACM Comput. Surv., vol. 36, no. 4, pp. 335–371,
2004.

[44] A. Hanushevsky, XRD Configuration Reference, SLAC, 2005. [Online]. Available:
http://xrootd.slac.stanford.edu/

[45] A. Hanushevsky, Open File System and Open Storage System Configuration
Reference, SLAC, 2005. [Online]. Available: http://xrootd.slac.stanford.edu/

[46] A. Hanushevsky and G. Ganis, Authentication and Access Control Configuration
Reference, SLAC, 2005. [Online]. Available: http://xrootd.slac.stanford.edu/

[47] A. Hanushevsky, Open Load Balancing Configuration Reference, SLAC, 2005.
[Online]. Available: http://xrootd.slac.stanford.edu/

[48] G. Anderson and P. Anderson, The unix C shell field guide. Prentice-Hall, 1986.

[49] A. Hanushevsky, Cache File System Support MPS Reference, SLAC, 2004.
[Online]. Available: http://xrootd.slac.stanford.edu/

http://www.dcache.org
http://www.desy.de
http://www.desy.de
http://www.fnal.gov/
http://www.fnal.gov/
http://root.cern.ch
http://xrootd.slac.stanford.edu/papers/Scalla-Intro.htm
http://xrootd.slac.stanford.edu/
http://xrootd.slac.stanford.edu/
http://xrootd.slac.stanford.edu/
http://xrootd.slac.stanford.edu/
http://xrootd.slac.stanford.edu/

BIBLIOGRAPHY 65

[50] A. Hac and T. Johnson, “A study of dynamic load balancing in a distributed
system,” in SIGCOMM ’86: Proceedings of the ACM SIGCOMM conference on
Communications architectures & protocols. New York, NY, USA: ACM Press,
1986, pp. 348–356.

[51] K. Bubendorfer and J. H. Hine, “A compositional classification for load-balancing
algorithms,” Victoria University of Wellington, Tech. Rep. CS-TR-99-9, July
1998.

[52] O. Bcarring, et al., “Storage resource sharing with CASTOR,” in In Proceedings
of the 12th NASA Goddard, vol. 21st IEEE Conference on Mass Storage Systems
and Technologies, April 2004, pp. 345–359.

[53] A. Shoshani, A. Sim, and J. Gu, Storage Resource Managers: Essential Compo-
nents for the Grid. Kluwer Academic Publishers, 2003, ch. In Grid Resource
Management: State of the Art and Future Trends, pp. 321–340.

[54] L. Bernardo, A. Shoshani, A. Sim, and H. Nordberg, “Access coordination of
tertiary storage for high energy physics applications,” in IEEE Symposium on
Mass Storage Systems, 2000, pp. 105–118. [Online]. Available: citeseer.ist.psu.
edu/bernardo00access.html

[55] A. Shoshani, A. Sim, and J. Gu, “Storage resource managers: Middleware
components for grid storage,” 2002. [Online]. Available: citeseer.ist.psu.edu/
shoshani02storage.html

citeseer.ist.psu.edu/bernardo00access.html
citeseer.ist.psu.edu/bernardo00access.html
citeseer.ist.psu.edu/shoshani02storage.html
citeseer.ist.psu.edu/shoshani02storage.html

	Introduction
	A case study
	STAR experiment
	STAR computing resources
	Storage solutions in STAR: Centralized vs distributed
	Hardware vs Software solution
	STAR data computing model
	Distributed data model in STAR: rootd current approach

	Distributed file systems for HENP environment
	The dCache system
	Xrootd (eXtended rootd) system

	Delivering high-performance and scalable data access
	Basic xrootd deployment
	Enabling Mass Storage System (MSS) access
	Un-coordinated MSS requests
	Creating a uniform name-space
	Coexistence with other Data management tools in STAR

	Increasing I/O rate from MSS
	Load balancing and server selection algorithm
	Investigating workload of the system

	Monitoring the behavior of xrootd
	Measuring and comparing the performance

	Improving Xrootd
	XROOTD - SRM architecture design

	Conclusion
	Load statistic
	Bibliography

